中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98196
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 59223072      在线人数 : 504
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98196


    题名: 整合YOLOv11-Pose與ByteTrack於邊緣運算平台之老年照護自主跟隨機器人;Edge-Enabled Autonomous Follower Robot for Elderly Care via Integration of YOLOv11-Pose and ByteTrack
    作者: 高振耀;Kao, Chen-Yao
    贡献者: 資訊工程學系在職專班
    关键词: YOLO;ByteTrack;邊緣運算;機器人
    日期: 2025-07-28
    上传时间: 2025-10-17 12:28:37 (UTC+8)
    出版者: 國立中央大學
    摘要: 全球高齡化使居家照護需求急升,傳統人力服務愈顯不足且難兼顧長者安全與自主。為解決此問題,本研究針對光線多變且狹小的動態家居環境,提出一款以邊緣運算為核心的自主跟隨機器人平台。系統融合改良之YOLOv11-Pose進行人體骨架聯合偵測,配合ByteTrack多目標追蹤以維持穩定ID,並透過RGB-D SLAM與OctoMap建構即時三維佔用地圖,以結合MIAT模組化架構。於NVIDIA Jetson Orin Nano實測,端到端閉迴路平均延遲85 ms,核心推論速率11.8 fps,追隨誤差±10 cm。結果證實,本方法能在低功耗裝置上提供近工業級精度與即時性,顯示深度視覺結合模組化設計可有效填補居家照護人力缺口,並為智慧照護機器人提供可擴充且具成本效益的實作範例。;The accelerating global aging trend is driving a surge in home-care demand, yet conventional, labor-intensive services can no longer balance the safety and autonomy of older adults. To bridge this gap, we present an edge-computing–centered autonomous follower-robot platform designed for dynamic, light-varying, and space-constrained residential settings. The system fuses an enhanced YOLOv11-Pose network for joint human-body and skeleton detection with ByteTrack multi-object tracking to maintain stable IDs, while RGB-D SLAM and OctoMap cooperate to construct a real-time 3D occupancy map. These perception and mapping modules are encapsulated within a MIAT modular architecture for efficient data flow. Deployed on an NVIDIA Jetson Orin Nano, the prototype achieves an end-to-end closed-loop latency of 85 ms, an overall closed loop rate of 11.8 fps, and a following error of ±10 cm. The results confirm that the proposed approach delivers near-industrial accuracy and real-time responsiveness on low-power hardware, demonstrating that deep-vision techniques married with modular design can effectively mitigate caregiver shortages in home settings while offering a scalable, cost-efficient blueprint for smart-care robots.
    显示于类别:[資訊工程學系碩士在職專班 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML17检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明