中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98351
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 60037920      Online Users : 968
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98351


    Title: 目標導向區塊強化機制之少樣本影像分類;TAP-Net: Target-Aware Patch Enhancement Mechanism for Few-Shot Image Classification
    Authors: 陳詩云;Chen, Shih-Yun
    Contributors: 資訊工程學系
    Keywords: 少樣本影像分類;YOLO;特徵增強;Few-Shot Image Classification;YOLO;Feature Enhancement
    Date: 2025-07-28
    Issue Date: 2025-10-17 12:40:15 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在基於局部特徵的少樣本影像分類任務中,模型常因區域類別相似度高而導致分類錯誤。因此,我們提出一種整合目標導向區域強化機制的少樣本分類架構 TAP-Net。該方法結合 YOLO 偵測模型,定位圖片中的目標區域,並設計兩項模組:目標導向區塊重加權(Target-Guided Patch Reweighting)機制與目標導向特徵增強機制(Target-Guided Feature Enhancement),分別強化模型對重要區域的權重與特徵表示。此外,本研究亦提出一種目標導向的資料增強策略,透過模糊非目標區域以減少背景資訊,進一步提升模型泛化能力。
    在 miniImageNet 資料集上的實驗結果顯示,我們的方法在 5-way 1-shot 與 5-way 5-shot 任務下的分類準確率分別為 71.31% 與 84.99%,皆優於原始 FewTURE 架構,證明本研究所提出方法能有效提升模型的泛化能力,為少樣本分類任務提供了一種新的解決方法。
    ;In patch-based few-shot image classification, models often suffer from misclassification due to high inter-class similarity within local regions. To address this challenge, we propose TAP-Net, a novel few-shot classification framework that incorporates a target-guided region enhancement mechanism. Our method leverages the YOLO detection model to localize target regions within images and introduces two key modules: Target-Guided Patch Reweighting, which emphasizes the importance of semantically relevant patches, and Target-Guided Feature Enhancement, which strengthens the representation of crucial areas by enriching their contextual features.
    Additionally, we propose a target-guided data augmentation strategy that reduces background interference by applying Gaussian blur to non-target regions, thereby improving the model’s generalization capability.
    Experimental results on the miniImageNet dataset demonstrate that TAP-Net achieves classification accuracies of 71.31% for the 5-way 1-shot task and 84.99% for the 5-way 5-shot task—both surpassing the performance of the original FewTURE framework. These findings validate the effectiveness of our proposed approach in enhancing feature discriminability and model generalization, offering a new direction for few-shot classification research.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML3View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明