中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98351
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 60039374      線上人數 : 939
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98351


    題名: 目標導向區塊強化機制之少樣本影像分類;TAP-Net: Target-Aware Patch Enhancement Mechanism for Few-Shot Image Classification
    作者: 陳詩云;Chen, Shih-Yun
    貢獻者: 資訊工程學系
    關鍵詞: 少樣本影像分類;YOLO;特徵增強;Few-Shot Image Classification;YOLO;Feature Enhancement
    日期: 2025-07-28
    上傳時間: 2025-10-17 12:40:15 (UTC+8)
    出版者: 國立中央大學
    摘要: 在基於局部特徵的少樣本影像分類任務中,模型常因區域類別相似度高而導致分類錯誤。因此,我們提出一種整合目標導向區域強化機制的少樣本分類架構 TAP-Net。該方法結合 YOLO 偵測模型,定位圖片中的目標區域,並設計兩項模組:目標導向區塊重加權(Target-Guided Patch Reweighting)機制與目標導向特徵增強機制(Target-Guided Feature Enhancement),分別強化模型對重要區域的權重與特徵表示。此外,本研究亦提出一種目標導向的資料增強策略,透過模糊非目標區域以減少背景資訊,進一步提升模型泛化能力。
    在 miniImageNet 資料集上的實驗結果顯示,我們的方法在 5-way 1-shot 與 5-way 5-shot 任務下的分類準確率分別為 71.31% 與 84.99%,皆優於原始 FewTURE 架構,證明本研究所提出方法能有效提升模型的泛化能力,為少樣本分類任務提供了一種新的解決方法。
    ;In patch-based few-shot image classification, models often suffer from misclassification due to high inter-class similarity within local regions. To address this challenge, we propose TAP-Net, a novel few-shot classification framework that incorporates a target-guided region enhancement mechanism. Our method leverages the YOLO detection model to localize target regions within images and introduces two key modules: Target-Guided Patch Reweighting, which emphasizes the importance of semantically relevant patches, and Target-Guided Feature Enhancement, which strengthens the representation of crucial areas by enriching their contextual features.
    Additionally, we propose a target-guided data augmentation strategy that reduces background interference by applying Gaussian blur to non-target regions, thereby improving the model’s generalization capability.
    Experimental results on the miniImageNet dataset demonstrate that TAP-Net achieves classification accuracies of 71.31% for the 5-way 1-shot task and 84.99% for the 5-way 5-shot task—both surpassing the performance of the original FewTURE framework. These findings validate the effectiveness of our proposed approach in enhancing feature discriminability and model generalization, offering a new direction for few-shot classification research.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML3檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明