English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 59600995      線上人數 : 1473
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98557


    題名: SAM-VPG:基於視覺提示引導之少樣本工業瑕疵分割方法;SAM-VPG:Few-Shot Segmentation of Industrial Defects via Visual Prompt Guidance
    作者: 許仁覺;HSU, JEN-CHUEH
    貢獻者: 資訊工程學系
    關鍵詞: 瑕疵檢測;異常檢測;SAM;少樣本學習;視覺提示;Defect detection;Anomaly detection;SAM;Few-shot learning;Visual prompt
    日期: 2025-08-13
    上傳時間: 2025-10-17 12:55:33 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究針對工業瑕疵檢測中標記成本過高與少樣本學習性能不佳的問題,提出SAM-VPG (Few-Shot Segmentation of Industrial Defects via Visual Prompt Guidance)方法。SAM-VPG以SAM(Segment Anything)架構為基礎,融合高效微調與精細視覺提示,並使用瑕疵知識遷移提升少樣本瑕疵分割的性能。SAM-VPG採用四項技術策略:(1)設計精細視覺提示,包括框提示與群中心點提示,提供更豐富的瑕疵空間與特徵資訊;(2)引入低秩適應(LoRA)高效微調策略增強模型泛化能力;(3)建立瑕疵遷移學習策略,提升少樣本分割的準確度;(4)整合輕量化架構以滿足實際部署需求。本研究在MVTec AD標準資料集與自建SPTD工業瑕疵資料集上進行0-shot至20-shot的效能評估,實驗結果顯示SAM-VPG優異的表現:在MVTec AD的0-shot測試中達到89.1% AUROC,展現良好的跨域泛化能力;在SPTD資料集上相較於基準方法可將IoU從50.5%提升至58.9%,驗證其在複雜工業場景的適應性。;To address the challenges of high labeling costs and poor few-shot performance in industrial defect detection, this study proposes SAM-VPG (Few-Shot Segmentation of Industrial Defects via Visual Prompt Guidance). Built upon the Segment Anything (SAM) architecture, SAM-VPG integrates efficient fine-tuning with refined visual prompts and leverages defect knowledge transfer to enhance few-shot segmentation performance. It adopts four technical strategies: (1) refined visual prompts, including box prompts and cluster-centroid point prompts, to provide richer spatial and feature information of defects; (2) incorporation of LoRA, a low-rank adaptation strategy, for efficient fine-tuning and enhanced model generalization; (3) construction of a defect transfer learning strategy to improve few-shot segmentation IoU; (4) integration of a lightweight architecture to meet practical deployment demands. The proposed method is evaluated on both the standard MVTec AD dataset and the custom SPTD (Spingence Tiny Defect) dataset across 0-shot to 20-shot scenarios. Experimental results demonstrate the superior performance of SAM-VPG: achieving 89.1% AUROC in 0-shot testing on MVTec AD, demonstrating strong cross-domain generalization; and improving IoU from 50.5% to 58.9% compared to baseline methods on the SPTD dataset, validating its adaptability to complex industrial environments.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML16檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明