三重週期極小曲面(TPMS)結構具有連續且平滑的幾何特徵,能夠提供優異的設計彈性,廣泛應用於力學強化與能量吸收等應用。儘管金屬積層製造目前為製作 TPMS 結構的主流技術,卻面臨高成本、尺寸限制與難以實現高密度結構等挑戰,限制了在大尺寸工程應用之發展潛力。為了解決上述問題,本研究提出一種結合 3D 列印PLA模型與精密鑄造的模組化製程,用以製作Schwarz Primitive型 TPMS 結構,並成功製作出六種不同壁厚與單元排列組合的結構。實驗結果顯示,壁厚的增加可顯著提升結構的降伏強度、彈性模數與單位體積吸收能(Wd),其中C33-T20樣品達到最高吸收能量(65.2 MJ/m³),而C33-T15樣品則具有最高比能量吸收(SEA = 19.9 J/g)。進一步比較 SEA 與密度關係可發現,在中高密度範圍(1.8-3.5 g/cm³)下,本文所製作的模組化TPMS結構在能量吸收效能上優於傳統晶格架構與不銹鋼金屬泡沫(S-S CMF),並可透過調整結構壁厚實現可調式吸能設計。本研究所提出的模組化框架不僅具備可重構與可替換性,更克服了傳統精密鑄造對於複雜互連結構的幾何限制,展現出一條可擴大規模、具成本效益的高性能吸能元件結構的製造方案,適用於各類工程應用場景。;Structures with triply periodic minimal surfaces (TPMS) are characterized by continuous and smooth geometries, providing design versatility well-suited for mechanical enhancement and energy dissipation functions. However, although metal additive manufacturing (AM) is the dominant approach for fabricating TPMS structures, it faces significant challenges in large-scale applications due to high costs, size limitations, and difficulties in achieving high-density structures. To overcome these limitations, this study proposes a modular investment casting strategy using 3D-printed PLA patterns to fabricate Schwarz Primitive TPMS structures. Six configurations with different wall thicknesses and unit cell counts were successfully produced. Experimental results demonstrated that increasing the wall thickness significantly enhanced the yield strength, elastic modulus, and absorption energy (Wd), with C33-T20 exhibiting the highest absorption energy of 65.2 MJ/m³. In contrast, the C33-T15 specimen showed the highest mass-specific SEA of 19.9 J/g. Further contextualizing the mechanical performance, a comparison of SEA–density profiles revealed that the modular TPMS structures not only outperform conventional lattice topologies and stainless-steel cellular metal foams (S–S CMFs) at higher densities (1.8–3.5 g/cm³), but also offer tunable energy absorption behavior simply by adjusting wall thickness. The proposed modular framework offers not only reconfigurability and replaceability but also overcomes the geometric limitations of traditional casting in producing complex, interconnected structures. This work demonstrates a scalable and cost-effective pathway for manufacturing high-performance energy-absorbing components in engineering applications.