中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89773
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47025293      Online Users : 103
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89773


    Title: 藉由權重之梯度大小調整DropConnect的捨棄機率來訓練神經網路;Training a neural network by adjusting the drop probability in DropConnect based on the magnitude of the gradient
    Authors: 楊緣智;Yang, Yuan-Chih
    Contributors: 資訊工程學系
    Keywords: 過度擬合;正則化;Dropout;DropConnect;泛化;Overfitting;Regularization;Dropout;DropConnect;Generalization
    Date: 2022-07-19
    Issue Date: 2022-10-04 11:59:10 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在深度學習訓練中,Dropout 和 DropConnect 是常被用來解決過度
    擬合的正則化技術,Dropout 和 DropConnect 藉由在訓練過程中以一個
    固定機率隨機地捨棄神經元及該神經元前後的連結,使得每個神經元彼
    此之間不會過度依賴其他神經元,進而提高模型泛化的能力。
    本文提出了一種新模型 Gradient DropConnect,它利用每個權重和
    偏差的梯度以確定它們在訓練期間的下降捨棄機率。我們進行了一連串
    的實驗以驗證這種方法可以有效地緩解過度擬合。;Dropout and DropConnect are regularization techniques often used to address the overfitting issue in deep learning. Dropout and DropConnect randomly discard neurons or links with a fixed probability during training
    so that each neuron does not depend too much on other neurons, thereby improving the model’s generalization ability.
    This paper proposes a new model, Gradient DropConnect, which leverages the gradient of each weight and bias to determine their dropping probabilities during training. We conducted thorough experiments to validate that such an approach can effectively mitigate overfitting.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML51View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明