氫能因其具備零碳排放、高效能及可再生等優點,被視為未來清潔能源的重要支柱。然而,目前主流的水電解制氫技術仍高度依賴貴金屬催化劑,其昂貴成本限制了大規模商業化的推廣。因此,開發高效且低成本的非貴金屬催化材料成為當前研究的關鍵方向。本研究利用脈衝電沉積技術,將鐵、鈷、鎳、銅、鋅五元高熵合金及高熵氧化物沉積於碳氈上,並採用以氯化膽鹼和乙二醇構成的深共熔溶劑作為電沉積介質,輔以次亞磷酸鈉作為添加劑以進一步提升材料性能。 實驗設計分為四個主要部分。首先,對碳纖維氈基底進行高溫熱處理與酸處理,以增強其表面活性及金屬附著能力。其次,製備深共熔溶劑,並通過脈衝電沉積法進行金屬沉積,針對不同頻率與占空比的脈衝參數進行優化比較。隨後,利用多種表徵分析確定材料的組成與表面形貌。最後,將製備的複合材料應用於電解水產氫及氨氮廢水降解,評估其電化學性能。 P-wP 2展現出卓越的電化學性能,在所有樣品中具有最低的析氫過電位,於50和100 mA/cm² 的電流密度下分別達到179 mV和232 mV。此外其Tafel斜率為178 mV/dec,顯示出良好的催化活性。阻抗分析進一步證實了其優異特性,鍍層阻抗僅為0.529 Ω,電荷轉移阻抗亦相對較低,僅7.559 Ω,促進了電子轉移動力學。最後P-wP 2具備出色的耐腐蝕性,並在氨氮廢水產氫方面展現出卓越的性能,突顯其作為高效且耐用電觸煤的潛力。 ;Hydrogen energy is known as a critical green energy source due to its no carbon emissions, high efficiency, and renewability. However, the large-scale commercialization of water electrolysis remains constrained by the high cost of noble metal catalysts. To handle this issue, this study developed a novel pulsed electrodeposition technique to fabricate FeCoNiCuZn high-entropy alloys and high-entropy oxides on a carbon felt substrate. The electrodeposition process utilized a deep eutectic solvent composed of choline chloride and ethylene glycol, supplemented with sodium phosphinate as an additive to enhance material performance. The study involved substrate pretreatment, material synthesis using optimized pulsed parameters, comprehensive material characterization and electrochemical testing for hydrogen production and ammonia-nitrogen wastewater degradation. Results indicated that pulsed electrodeposition with sodium phosphinate significantly improved the uniformity and surface morphology of the materials. Among the synthesized composites, P-wP 2 exhibited the best overall performance. P-wP 2 exhibited exceptional electrochemical performance, achieving the lowest overpotential (179 mV at 50 mA/cm², 232 mV at 100 mA/cm²) and a favorable Tafel slope (178 mV/dec) for HER. It also demonstrated the smallest coating resistance (0.529 Ω) and low charge transfer resistance (7.559 Ω), enhancing electron transfer kinetics. Additionally, P-wP 2 showed excellent corrosion resistance and outstanding hydrogen production from ammonia-nitrogen wastewater, confirming its potential as an efficient and durable electrocatalyst.