中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/96168
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47014065      Online Users : 126
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/96168


    Title: 高分子光電倍增二極體與偏極子元件之設計與開發;Design and Development of Polymer Photomultiplication Photodiode and Polariton Device
    Authors: 林頌榮;Lin, Sung-Jung
    Contributors: 光電科學與工程學系
    Keywords: 光電倍增二極體;提升元件的外部量子效率;雙銀共振腔;偏極子共振態;光響應的紅移;多角度下的吸收特性;photomultiplication organic photodiodes;improve the external quantum efficiency;double-silver microcavity;polariton resonance state;redshift in optical response;the absorption properties of polariton device under various angles of incidence
    Date: 2025-01-20
    Issue Date: 2025-04-09 16:16:11 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文主旨為利用Poly[2-methoxy-5-(3,7-dimethyoctyoxyl)-1,4-phenylenevi- nylene](MDMO-PPV)搭配 [6,6]-phenyl-C61-butyric acid methyl est er (PC_61 BM)作為主動層材料,開發光電倍增二極體(Photomultiplication Organic Photodiode,PM-OPD)。本研究分為兩部分,第一部分著重於標準型光電倍增二極體的優化,透過調整不同PC_61 BM摻雜比例以提升元件的外部量子效率(External Quantum Efficiency, EQE)與光響應度(Responsivity,R);而第二部分將主動層放置於雙銀共振腔當中。理論上,在共振腔中光子如果與材料激發態(激子)之間能量接近時會產生能量耦合,產生半光半物質之混成態,即偏極子(polariton)共振態。而偏極子能有效改變光吸收的機制,使元件的光響應不再拘限於材料本身的吸收範圍。
    在優化標準型光電倍增二極體的過程中,透過不同PC_61 BM摻雜比成功在4 wt%下達到最好的效率,其外部量子效率在521 nm入射光條件照射下達到4668 %。不過後續通過模擬激子產生率瞭解內部機制並與實驗對比,最後表明此類型元件強烈依賴於主動層中主體材料的吸收。
    後續透過引進偏極子的物理機制,將元件設計為共振腔結構,以實現光響應的紅移,透過光譜測量證明偏極子元件確實能有效改變光吸收機制,使元件的光響應不再拘限於材料本身的吸收範圍。後續進一步利用角度解析光譜技術和Hopfield Hamiltonian色散模型,研究偏極子元件在多角度下的吸收特性,結果表明偏極子元件具有弱角度色散且窄帶吸收的優勢。最終,所製作的偏極子元件在628 nm入射光條件下的外部量子效率從43 %提升至311 %,拉比分裂為890 meV,耦合強度為激子能量的35 %,證明此時元件屬於超強耦合的狀態
    ;The purpose of this thesis is to develop photomultiplication organic photodiodes (PM-OPDs) using Poly[2-methoxy-5-(3,7-dimethyloctyoxyl)-1,4-phenylenevinylene] (MDMO-PPV) combined with [6,6]-phenyl-C61-butyric acid methyl ester (PC_61 BM) as the active layer material. This research is divided into two main parts. The first part focuses on optimizing standard PM-OPD by adjusting the PC_61 BM doping ratio to improve the external quantum efficiency and responsivity of the devices. The second part incorporates the active layer into a double-silver microcavity. Theoretically, when the photon energy within the cavity closely matches the exciton energy of the material’s excited state, energy coupling occurs, forming a hybrid state of half-light and half-matter known as the polariton resonance state. Polariton coupling can effectively modify the light absorption mechanism, enabling the device’s optical response to extend beyond the intrinsic absorption range of the material.
    During the optimization of standard PM-OPD, the optimal doping ratio of 4 wt% PC_61 BM was determined, achieving the highest efficiency with an EQE of 4668% under 521 nm incident light. However, subsequent simulations of exciton generation rates combined with experimental verification revealed that the performance of this type of device is strongly dependent on the absorption of the host material in the active layer.
    In the second part, by introducing the physical mechanism of polariton, the device was designed as a microcavity structure to achieve a redshift in optical response. Spectral measurements demonstrated that polariton device can effectively alter the light absorption mechanism, extending the optical response beyond the material’s intrinsic absorption range. Furthermore, angle-resolved spectroscopy and the Hopfield Hamiltonian dispersion model were employed to study the absorption properties of polariton device under various angles of incidence. The results showed that polariton devices exhibit weak angular dispersion and narrowband absorption advantages. Ultimately, the fabricated polariton device achieved an EQE enhancement from 43% to 311% under 628 nm incident light, with a Rabi splitting of 890 meV and a coupling strength of 35% of the exciton energy, confirming that the device operates in the ultrastrong coupling regime.
    Appears in Collections:[Graduate Institute of Optics and Photonics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML58View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明