中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/96230
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47015121      在线人数 : 144
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/96230


    题名: 高溫型質子交換膜燃料電池堆性能測試與熱管理研究;Performance Test and Thermal Management of a High Temperature Proton Exchange Membrane Fuel Cell
    作者: 王品元;Wang, Pin-Yuan
    贡献者: 能源工程研究所
    关键词: 高溫型質子交換膜燃料電池;計量比;熱阻模型;熱管理
    日期: 2024-10-01
    上传时间: 2025-04-09 17:20:38 (UTC+8)
    出版者: 國立中央大學
    摘要: 近幾年來由於空氣污染造成的溫室效應以及極端氣候,使各國逐漸重視環保議題,氫能也被視為相當有潛力的能源,其中高溫質子交換膜燃料電池由於具有質子交換膜燃料電池與高溫操作的優點,吸引不少研究人員投入這方面的研究,本研究也針對高溫質子交換膜燃料電池堆熱管理以及改變陰極計量比對於電池堆性能影響進行探討,並透過溫度分佈量測與熱阻網絡模型來預測電池堆內部無法量測部件的溫度分佈。
    本研究對高溫型質子交換膜燃料電池進行不同環境溫度以及不同計量比下的溫度分佈與性能量測,溫度分佈是在穩態時利用熱電偶進行電池堆不同位置與不同深度的量測,性能測試則是透過極化曲線測試與各級電壓量測來進行量測,並使用熱阻網絡模型與量測出的溫度數據對無法量測的電池部件溫度進行預測。
    實驗結果顯示,此五級電池堆在、操作溫度160℃、氣體流率20 c.c/min/cell、陽極計量比1.2與陰極計量比2.0的情況下,環境溫度40℃時最高功率密度為991 mA/cm2,在環境溫度25℃時最高功率密度為931 mA/cm2。在不透過加熱系統進行加溫並利用定電流來使電池堆溫度達到穩態的情況下,溫度分佈結果顯示電池堆的最高溫度都會在電池堆第三級(中心)位置,且電池堆在環境溫度40℃時的平均溫度相較於電池堆在環境溫度25℃時的平均溫度高了約10℃,電池堆溫度隨著陰極計量比提高而有所下降,但性能反而有所上升。從各級電壓量測可以發現,在適當計量比內透過提高環境溫度所帶來的電壓上升會比提高計量比來的好。熱阻網絡模型所預測出的測量點溫度與實際測量出的溫度誤差小於5%,因此可證明此模型所做的預測具有一定的參考價值,由熱阻模型可以再對電池堆內部無法被量測的物件溫度進行估算。
    ;In the recent years, air pollution has exacerbated the greenhouse effect and extreme weather conditions, prompting countries to increasingly prioritize environmental issues. Hydrogen energy has emerged as a highly promising energy source. Among various hydrogen energy technologies, high-temperature proton exchange membrane fuel cell (HT-PEMFCs) combines the advantages of proton exchange membrane fuel cells and high-temperature operation, drawing considerable interest from researchers. This study focuses on the thermal management of HT-PEMFC stacks and investigates the impact of varying the cathode side stoichiometric ratio on the stack performance and thermal characteristic. Additionally, it utilizes temperature distribution measurements and a thermal resistance network model to predict the temperature distribution of components within the fuel cell stack that cannot be directly measured.
    This study examines the temperature distribution and performance of high-temperature proton exchange membrane fuel cells under different ambient temperatures and stoichiometric ratios. Temperature distribution measurements are conducted at steady state by measuring the temperature at various positions and depths within the fuel cell with thermocouple. Performance testing involves polarization curve tests and individual cell voltage measurements. A thermal resistance network model, along with the measured temperature data, is used to predict the temperatures of fuel cell components that cannot be directly measured.
    Experimental results show that this five-cell battery stack achieved a maximum power density of 991 mA/cm² at an ambient temperature of 40°C, with an operating temperature of 160°C, a gas flow rate of 20 c.c/min/cell, an anode stoichiometry of 1.2, and a cathode stoichiometry of 2.0. At an ambient temperature of 25°C, the maximum power density was 931 mA/cm². Without using a heating system and utilizing a constant current to bring the battery stack to a steady-state temperature, the temperature distribution results indicate that the highest temperature of the battery stack occurs at the third cell (center) position. The average temperature of the battery stack at an ambient temperature of 40°C is approximately 10°C higher than that at 25°C. The battery stack temperature decreases with an increase in the cathode stoichiometry, but the performance improves. Voltage measurements of each cell reveal that within an appropriate stoichiometry range, the voltage increase due to higher ambient temperatures is more beneficial than that achieved by increasing the stoichiometry. The temperature error between the measured points predicted by the thermal resistance network model and the actual measurements is less than 5%, indicating that the model′s predictions have a certain reference value. This thermal resistance model can further estimate the temperatures of objects within the battery stack that cannot be measured directly.
    显示于类别:[能源工程研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML60检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明