中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/96352
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47007853      Online Users : 103
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/96352


    Title: 以時間多工進行的砷化銦鎵/砷化銦鋁單光子雪崩二極體實現光子數解析;InGaAs/InAlAs Single Photon Avalanche Diode for Photon Number Resolution Using Time Multiplexing
    Authors: 歐智仁;OU, JHIH-REN
    Contributors: 電機工程學系
    Keywords: 時間多工;光子數解析
    Date: 2025-01-21
    Issue Date: 2025-04-09 17:51:49 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在不同種類的光偵測器中,單光子雪崩二極體(single-photon avalanche diode, SPAD)因其能在接近常溫的條件下操作,具有較低的暗計數率,且在光纖通訊的1550 nm波段中可作為量子密鑰分發(quantum key distribution, QKD)的光子接收偵測器而備受關注。因此,本文選擇研究基於III-V族材料的單光子雪崩二極體。
    實驗室過往研究中,是對輸出電壓振幅進行次數機率統計以實現光子數解析。然而,當欲增加偏壓以提升增益時,雜訊隨機分布的可能性增加,導致光子解析的準確度受限;相反地,當偏壓下降致增益過低時,電壓分離度(voltage separation)會降低,進而影響光子數準確辨識的能力。因此,為提升元件的光子數解析性能,實驗室過去研究多著力於在增益與非理想效應之間取得平衡。
    本文採用並設計了時間多工的量測方式,以減少非理想效應對光子數解析的影響。這一方法使量測結果符合泊松分布,並能針對3顆光子態進行分析。此外,本文分析並解釋了偵測效率與光子數解析之間的關係,實現了對入射光脈衝平均光子數近乎準確的重建。展望未來,我們提出了如何進一步提高光子數解析最大數目以及提升光子數辨識準確率的具體方法。
    ;Among various types of photodetectors, single-photon avalanche diodes (SPADs) are highly regarded for their ability to operate near room temperature, low dark count rates, and suitability as single photon detectors in quantum key distribution (QKD) within the 1550 nm wavelength range used in fiber-optic communication. Therefore, this study focuses on investigating SPADs based on III-V materials.
    In previous research conducted in our laboratory, photon-number resolution (PNR) was typically achieved by distinguishing output voltage amplitudes. However, increasing the bias voltage to enhance gain also increases the random noise distribution, thereby limiting the accuracy of PNR. Conversely, reducing the bias voltage lowers gain and reduces voltage separation, compromising the ability to accurately distinguish photon numbers. To address this challenge, prior studies had to carefully balance gain and non-ideal effects to optimize PNR performance.
    In this study, we designed and employed a time-multiplexing measurement approach to reduce the impact of non-ideal effects on PNR. This approach resulted in measurement outcomes consistent with a Poisson distribution and enabled the analysis of three photon number states. Furthermore, we comprehensively analyzed the relationship between detection efficiency and PNR distribution, achieving a near-accurate reconstruction of the mean photon number for incident light pulses. Looking ahead, we proposed specific methods to further enhance the maximum resolvable photon number and improve the accuracy of photon-number discrimination.
    Appears in Collections:[Graduate Institute of Electrical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML21View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明