中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/96376
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47013264      Online Users : 185
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/96376


    Title: GLn(C)的不可約表現建構方式之討論;On Some Constructions of Irreducible Representations of GLn(C)
    Authors: 宋狄謙;Sung, Di-Chian
    Contributors: 數學系
    Keywords: 不可約表現;Weyl模;最高權重;Irreducible representations;Weyl modules;Highest weight
    Date: 2025-01-17
    Issue Date: 2025-04-09 18:22:44 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在這篇文章中,我們討論兩種GLn(C)有限維的不可約表現之建構方式: Weyl 模和Highest weight定理。結果我們發現,Weyl模並不涵蓋所有GLn(C)的有限維不可約表現,比如說,對偶表現無法透過Weyl模來建構。因此,我們將透過其他的建構方式,來明確地刻劃出所有GLn(C)的有限維不可約表現。
    ;There are two constructions of irreducible finite-dimensional representations of GLn(C):
    Weyl modules and Highest weight theory. It turns out that Weyl modules don’t give us all irreducible finite-dimensional representations of GLn(C). For example, dual representations are not included in Weyl modules. In this article, we explicitly describe all irreducible finite-dimensional representations of GLn(C) that don’t arise from Weyl modules.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML11View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明