摘要: | 氮化矽陶瓷(Si₃N₄)作為一種具有高強度、耐高溫和低膨脹係數的優異基板材料,逐漸成為高性能電子設備中的重要材料,其在高溫和高負載條件下依然能保持穩定的物理及化學性能,並具備耐磨性、抗腐蝕性和抗熱震性,廣泛應用於航空航天、汽車工業以及電子封裝等領域,此外氮化矽陶瓷的低熱膨脹係數和良好的絕緣性能使其成為功率電子模組中的理想基板材料。 本研究旨在利用奈秒雷射表面處理技術,研究不同雷射能量密度對氮化矽陶瓷基板表面形貌的影響,針對表面微結構的檢測方法,一般以計算平均表面粗糙度(Arithmetic Mean Surface Roughness,Sa)及算術平均粗糙度(Arithmetic Mean Roughness,Ra)兩種方法來檢測為主,本研究加入以光學方法計算其雷射表面處理後的表面積變化及表面輪廓線平坦化後的長度變化,並與接合強度測試結果進行討論。 關於接合方法,過去普遍為透過高溫和高壓的擴散接合法為主,本研究此次以相對較低溫且無須施加壓力的化學還原鍍銅法來進行接合,化學還原鍍銅技術在電子封裝中具有重要作用,相較於傳統電鍍,化學鍍銅無需外加電流,特別適合於形狀複雜的基材表面覆蓋,該技術通過精確控制溶液參數來調節鍍層厚度,進一步提升其電氣性能,這使其在高性能電子設備的應用中極具潛力,本研究也會對透過文獻與實驗結果對這兩種接合方法進行接合界面的討論。 實驗結果顯示,隨著雷射能量密度的增加,氮化矽陶瓷基板的粗糙度、表面積及輪廓線長度都有顯著增加,從而增強了銅層的附著力和剝離強度。當雷射能量密度達到94.09 J/cm²時,剝離強度達到最大值,表明雷射處理能夠顯著改善陶瓷基板的表面結構,為化學鍍銅層提供更強的機械錨定效應和化學反應位點。 ;Silicon nitride (Si₃N₄) ceramics, known for their high strength, superior thermal stability, and low coefficient of thermal expansion, have progressively become vital substrate materials for high-performance electronic devices. These ceramics exhibit stable physical and chemical properties under high-temperature and high-load conditions, along with exceptional wear resistance, corrosion resistance, and thermal shock resistance. Such characteristics render them widely applicable in aerospace, automotive industries, and electronic packaging. Additionally, their low coefficient of thermal expansion and excellent insulating properties make silicon nitride ceramics ideal substrate materials for power electronic modules. This study utilizes nanosecond laser surface treatment to investigate the effects of varying laser energy densities on the surface morphology of silicon nitride ceramic substrates. Surface microstructural characterization primarily involves the measurement of arithmetic mean surface roughness (Sa) and arithmetic mean roughness (Ra). Furthermore, this study integrates optical methods to calculate surface area changes and contour length variations after laser treatment and correlates these findings with the bonding strength test results. Conventional bonding methods predominantly rely on high-temperature and high-pressure diffusion bonding. In contrast, this study employs electroless copper plating via chemical reduction as a relatively low-temperature and pressure-free bonding method. Electroless copper plating is a key technique in electronic packaging due to its ability to coat complex substrate geometries without requiring external currents. By precisely controlling solution parameters, this method enables the regulation of plating thickness, thereby enhancing electrical properties. These advantages position electroless copper plating as a highly promising approach for high-performance electronic applications. This study also examines bonding interface characteristics through a comparative analysis of diffusion bonding results reported in the literature and experimental findings. Experimental results demonstrate that increasing laser energy density significantly enhances the roughness, surface area, and contour length of silicon nitride ceramic substrates. These changes lead to enhanced adhesion and increased peel strength of the copper layer. At a laser energy density of 94.09 J/cm², the peel strength reaches its peak, indicating that laser treatment effectively modifies the surface structure of ceramic substrates. This enhancement provides stronger mechanical anchoring effects and additional chemical reaction sites for the electroless copper layer. |