本研究提出一種基於雙光束偏振干涉技術的高靈敏滾轉角位移量測方法,專為精密滾轉角位移量測系統設計。該技術以雙折射晶體為核心元件,結合偏振元件與偏振相機構成的偏振干涉儀,能快速捕捉晶體姿態角變化引起的相位差。由於系統對相位差的高靈敏度,能精確檢測滾轉角的微小位移,並透過滾轉角位移與相位差變化的關係實現準確量測。 為進一步提升量測準確性,本研究設計了一種特殊的雙光束結構。考量到雙折射晶體的入射角位移可能導致相位差變化並影響滾轉角量測結果,系統利用雙光束入射角變化方向相反的特性,當入射角位移發生時,兩束光所引起的相位差變化呈現相反趨勢。藉由計算兩束光相位差的平均值,可有效抵消入射角位移引入的干擾,大幅提升滾轉角位移量測的準確性。 實驗結果顯示,該系統在入射角位移變化條件下能有效消除干擾,並驗證了系統的穩定性。同時,本研究針對潛在系統誤差進行了深入探討,並提出相應解決方案。解析度測試結果顯示,系統解析度達1.39 arcsec,展現出卓越的穩定性與可靠性。 此技術具備高靈敏度、體積小,並通過雙光束架構有效消除入射角位移干擾,實現滾轉角微小位移的高精度量測。該研究為精密量測技術提供了創新解決方案,具有廣泛的應用潛力。 ;This study introduces a highly sensitive roll angle displacement measurement method based on dual-beam polarization interferometry, designed for precision roll angle measurement systems. The method utilizes a birefringent crystal as the core component, integrated with polarization elements and a polarization camera to form a polarization interferometer. This setup rapidly captures phase differences caused by variations in the crystal′s angular orientation. Its high phase sensitivity enables precise detection of subtle roll angle displacements by leveraging the relationship between displacement and phase shift. To improve accuracy, a dual-beam configuration is implemented. Since angular displacement of the incident light on the birefringent crystal may introduce phase shift variations, potentially interfering with roll angle measurements, the system uses the opposing phase shift trends of the two beams under incident angle changes. Calculating the average phase difference effectively cancels this interference, significantly enhancing measurement precision. Experimental results confirm that the system mitigates the impact of incident angle variations on roll angle measurements and demonstrates excellent stability. Additionally, potential system errors are thoroughly analyzed, and solutions are proposed. The system achieves a resolution of 1.39 arcsec, exhibiting exceptional stability and reliability. This technique combines high sensitivity, compact design, and the ability to suppress incident angle-induced interference via a dual-beam structure. It provides an innovative solution for precision metrology with extensive application potential.