English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43999522      線上人數 : 1440
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/29606


    題名: Is taking natural log superior to not? - Using a characteristics oriented fuzzy Hopfield neural network to identify probability density functions
    作者: Yen,EC
    貢獻者: 企業管理研究所
    關鍵詞: ASSOCIATIVE MEMORY;CLASSIFICATION;SYSTEM
    日期: 2009
    上傳時間: 2010-06-29 20:32:52 (UTC+8)
    出版者: 中央大學
    摘要: Lognormal processes are important from a theoretical perspective. We reexamine the problem of whether it is better to take natural log or not? If not, how to identify the probability density function is still an important problem. The assertion that taking natural log is closer to normality is not supported by the simulation and empirical data. The probabilistic neural network contains the entire set of training cases, and is therefore space-consuming and slow to execute. In addition, there is an inverse problem in PNNs, i.e.. we may obtain the same sum of square errors from different density functions. We therefore propose a screening mechanism based on characteristics oriented fuzzy rules in the Hopfield neural network to simplify the estimation process and avoid the inverse problem. From the characteristics oriented fuzzy HNN, we obtain that the best fitting of the data is the Weibull distribution. (C) 2008 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    顯示於類別:[企業管理研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1000檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明