English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43998487      線上人數 : 903
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51749


    題名: Compactness rate as a rule selection index based on Rough Set Theory to improve data analysis for personal investment portfolios
    作者: Shyng,JY;Shieh,HM;Tzeng,GH
    貢獻者: 企業管理學系
    關鍵詞: CLASSIFICATION RULES
    日期: 2011
    上傳時間: 2012-03-27 19:04:24 (UTC+8)
    出版者: 國立中央大學
    摘要: This study proposes a selection index technique, namely a compactness rate based on Rough Set Theory (RST), for improving data analysis, eliminating data amount and reducing the number of decision rule. This study uses an empirical real-case involving a personal investment portfolio to demonstrate the proposed method. The presented case includes 75 rules generated by the RST. The rules are vague and fragmentary, making it very difficult to interpret the information. Many rules have the same strength and number of support objects and condition parts. These are creating a critical problem for decision making. The new method proposed in this study not only enables the selection of interesting rules, but it also reduces the data amount, and offers alternative strategies that can help decision-makers analyze data. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
    關聯: APPLIED SOFT COMPUTING
    顯示於類別:[企業管理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML722檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明