本論文主要針對在低成本p型摻雜低阻值矽(111)基板上進行氮化鋁鎵/氮化鎵異質結構研究,在此磊晶結構上製作水平式氮化鋁鎵/氮化鎵蕭特基二極體,並進行相關磊晶與元件之特性分析。 在磊晶結構上,利用X光繞射儀量測GaN(002)以及GaN(102)面之半高寬值,可分析磊晶內螺旋差排缺陷以及刃狀差排缺陷多寡,得到之半高寬值分別為750、1602 arcsec;再利用霍爾量測確認磊晶電特性,測量得到之電子遷移率為1430 cm2/V-sec、片電子濃度為6.13?1012 cm-2 、片電阻率為726.1 Ω/square。在氮化鋁鎵/氮化鎵蕭特基二極體製程上,採用不同佈局之水平式蕭特基二極體,使陽極邊緣電場有效分散以達到1400伏特之崩潰電壓。而逆向回復時間為13 nsec,相對於傳統矽基蕭特基二體快非常多。 此外,利用低阻值矽基板導電特性,將矽基板額外加上電極進行元件的特性分析,發現矽基板接地或者外加偏壓方式能夠改變元件順偏以及逆偏電性,故本實驗更進一步討論矽基板偏壓造成元件常溫以及變溫下之電性改變。 We have demonstrated lateral AlGaN/GaN schottky barrier diodes (SBD) on low-resistive silicon substrate. Because of large lattice mismatch between silicon and GaN material, a 2 μm buffer layer had been grown on Si substrate to reduce stress between silicon and GaN. X-ray diffraction measurement was used to characterize the grown GaN quality. The full width at maximum value (FWHM) on GaN (002) was about 750 arcsec. This value showed a good understanding for AlGaN/GaN epitaxy on Si substrate. Hall measurement was also used to investigate the sheet carrier density, sheet resistance and electron mobility of grown AlGaN/GaN film; the measured value were 6.13?1012 cm-2, 726 Ω/square and 1430 cm2/V-sec, respectively. In the fabrication of Schottky barrier diodes, four different device layouts were investigated to reduce the high electric field at the edge of anode for breakdown voltage improvement, the resulted breakdown voltage was increased to 1400 V. Based on the low-resistivity of Silicon substrate, we also biased Si substrate to further study the electrical characteristic of AlGaN/GaN Schottky barrier diode. The substrate biasing effect was observed in both forward and reverse characteristics of diodes. Furthermore, we characterized SBDs at different temperatures to investigate if biasing silicon substrate would result in the the carrier confinement at interface of Al0.25Ga0.75N and GaN and thus device performance