在本論文中,我們藉由Hubbard模型和Anderson模型探討嵌入串接耦合量子點的奈米線之熱整流特性。並藉由?帝旭格林函數的技術推導在庫倫阻斷區間流經量子點奈米線的穿隧電流與熱流之公式。我們在電極與量子點間設計一層真空層降低聲子的效應,藉此探討由電子形成的熱整流特性。相較於在平行量子點接面的熱整流特性,我們發現串接耦合量子點的接面系統,熱整流機制是有所不同。我們也依序探討了量子點尺寸大小以及量子點位置對串接耦合量子點的熱整流特性的影響。我們證明了要在串接耦合量子點系統中觀察到熱整流的發生,尺寸擾動產生的量子點能階差異以及Seebeck effect產生的熱電壓所造成的能階偏移是必須的。 In this thesis, we have theoretically investigated the thermal rectification properties of serially coupled quantum dots (SCQDs) embedded in a nanowire connected to metallic electrodes by the Hubbard model and the Anderson model. The charge and heat currents in the Coulomb blockade regime are calculated by the Keldysh-Green function technique. We design a vacuum layer between metallic electrode and quantum dots to block the contribution of phonon transport and investigate the thermal rectification properties of electron transport. Compared with the case of parallel quantum dots (PQDs), the thermal rectification mechanism of SCQDs is different from that of PQDs. We also study the effects of quantum dot size and quantum dot location on thermal rectification properties of SCQDs. We have demonstrated that the thermal rectification properties can be observed in SCQDs in the absence of phonon heat current, where the energy level difference between dots and the energy level shift arising from the thermal voltage are required.