本研究探討雙機台間不具有儲存空間下極小化總延遲時間之雙機流程式生產排程問題。此篇我們假設有2台機台和n個工作,每個工作在兩機台分別有不同的工作時間以及交期時間,每個工作的釋放時間都相同,而工作的順序在進入機台1後就決定。如果工作在機台1完成後而機台2尚有未完成的工作,此時在機台1完成的工作將會被鎖在機台1,這將會使交期時間增加。 本文針對不具有儲存空間的雙機台排程問題所造成的延遲時間增加,提出5個定理來決定工作在最佳解排程下的的順序以及一個下限的方法來決定分支的方向,最後運用在分支界限法求得n個工作之最佳工作順序,使得總延遲時間為最小。在實驗分析裡我們先用相似的期刊論文驗證演算法的正確性。接下來我們比較Ronconi and Armentano (2001) 這篇論文在雙機台情境下的結果,我們得到了在工作數介於10至18之間我們的平均時間與平均產生的節點數都較Ronconi and Armentano (2001) 這篇論文來的有效率。 ;This paper considers a flow shop scheduling problem with blocking where the objective is to minimize total tardiness. There are two machines and n jobs, each job has different due date and the sequence of job is decided by machine 1. In two-machine flow shop with blocking scheduled problem, there are zero capacity buffer between machines and the job of completing is block on machine until the next downstream machine is available. The total tardiness will increase by influence of blocking constraint. We use branch and bound algorithm to find out an optimal sequence and propose five dominance criteria which are decide jobs of the precedence in an optimal schedule. For bounding, we extend lower bound of Pan, Chen and Chao (2002) to improve the branch and bound algorithm. In computation experiment, we use four scenarios of Ronconi and Armentano (2001) to test our algorithm. In job size between 10 and 18, our algorithm branches out fewer number of nodes as compared to the result in Ronconi and Armentano (2001).