English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75533/75533 (100%)
Visitors : 27264955      Online Users : 321
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65711

    Title: 具有寬負載調節能力之高效率數位控制電流模式直流對直流降壓轉換器;A High-Efficiency Digitally Controlled Current-Mode DC-DC Buck Converter with Wide-Load Regulation
    Authors: 王昭穎;Wang,Chao-Ying
    Contributors: 電機工程學系
    Keywords: 直流對直流穩壓器;比例-積分-微分控制器;雙線性轉換;類比數位轉換器;數位脈衝寬度調變器;極限循環振盪;可預測電流控制;數位電流感測器;DC-DC Converter;PID Controller;Bilinear Transform;Analog-to-Digital Converter (ADC);Digital Pulse-Width Modulator (DPWM);Limit-Cycle Oscillation;Predictive Current Control;Digital Current Sensor
    Date: 2014-07-08
    Issue Date: 2014-10-15 17:08:43 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 如何延長攜帶式電子產品的使用時間為一大重要議題,其中一種解決方式為增加電池之蓄電量,另一種方式為減少功率消耗、提高電源管理積體電路的功率轉換效率。切換式直流對直流穩壓器具有寬負載調節能力,適合應用於攜帶式電子產品之電力系統中,此外,數位控制之切換式穩壓器具有高度的設計彈性,系統參數可程式化修改,於不同製程下電路具有延伸性與重複使用的特質。
    本數位控制電流模式降壓轉換器是以0.18μm CMOS製程實現而成,晶片面積為2.66平方毫米。此降壓轉換器之輸入電壓範圍為2.3至4.4伏特,輸出電壓準位為1.8伏特,切換頻率為1百萬赫茲,負載電流範圍0-1安培。於500毫安培負載電流暫態下,產生之過衝或下衝電壓為230毫伏特,恢復時間為23微秒。線性調節度為9.5μV/mV,負載調節度為18μV/mA。最大功率轉換效率可達到92%。
    ;For portable electronics, the extension of usage time is an essential consideration. One solution is to increase the capacity of batteries. Another solution is to reduce the power consumption, that is to say, increase the power conversion efficiency of power management IC. For the requirement of wide-load regulation, the DC-DC switching regulator is suitable to employ in portable power system. Besides, the digitally-controlled DC-DC converter offers high-degree flexibility, programmable system para- meters, scalable and reusable hardware with difference processes.
    System design of the digital current-mode Buck converter is based on the mathematical derivations, and verified by using behavioral models. Due to insufficient phase margin of converter power stage, a digital compensator is necessary. The digital PID controller is used to increase the phase margin of converter power stage and extend the system bandwidth. PID controller is first devised in continuous -time domain, and then converted to discrete-time domain by the bilinear transform with frequency prewarping. Phase and system bandwidth is well-mapping after transformation. There are two quant- izers ADC and DPWM in control loop, the resolutions of this two circuits are dependent on system requirements and no-limit-cycle oscillation conditions to prevent the undesirable oscillation in output voltage. Predictive current control law is employed in digital current-mode controller. Based on the information of inductor current and voltage error between feedback voltage and reference voltage, the duty cycle of PWM is accordingly adjusted to control the converter to regulate the output voltage to the desired dc level.
    ADC used in digital controller is based on delay-line architecture with time-to-digital conversion, the resolution is 4 bits with 10mV LSB. PID controller is realized with look-up tables to reduce area cost. DPWM uses the counter-comparator architecture to provide accurate modulation of PWM duty cycle, the resolution is 8 bits with 3.9ns time resolution. Digital current sensor based on successive-approx- imation algorithm can realize the current sensing and quantization into single procedure, resolution is 4 bits with 93.2mA LSB, sensing range is 0-1.4A. Adaptive dead-time controller with fast detection of switching node voltage is utilized to improve power conversion efficiency and prevent occurrence of shoot-through current. A monolithic on-chip soft-start circuit is used to avoid abrupt inrush current during start-up period.
    The proposed digitally-controlled current-mode Buck converter is implemented by 0.18-μm CMOS process with 2.66mm2 chip area. Input voltage ranges from 2.3V to 4.4V, the output voltage is 1.8V, switching frequency is 1MHz, and a wide load current range 0-1A. A 230mV voltage overshoot/und- ershoot is achieved with 26μs recovery time during 500mA load current transient. The line regulation is 9.5μV/mV, and the load regulation is 18μV/mA. The maximum power efficiency is achieved with 92%.
    Appears in Collections:[電機工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明