English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 25560632      Online Users : 368
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68895

    Title: 化合物半導體之穿隧式場效電晶體製程與導通電流特性研究;Fabrication and On-current Characterization of Compound Semiconductor Tunnel Field Effect Transistors
    Authors: 李冠緯;Lee,Kuan-wei
    Contributors: 電機工程學系
    Keywords: 穿隧式場效電晶體;TFET
    Date: 2015-08-05
    Issue Date: 2015-09-23 14:46:08 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 穿隧式場效電晶體由於只需低的操作電壓即可使元件運作,且擁有低的關閉漏電流和低的次臨限擺幅等優點,而成為次世代取代金氧半電晶體的一大熱門;然而傳統的矽基穿隧式場效電晶體由於矽擁有較大的能隙(約1.1 eV),使元件特性受限於低的導通電流。III-V族材料穿隧式場效電晶體因具較低能隙寬度而有較高穿隧機率,且能保持與金氧半電晶體相近數量級的電流開關比,並同時擁有高的元件導通電流,故本論文著重於開發III-V族化合物半導體之穿隧式場效電晶體。
    微米尺寸穿隧式場效電晶體製程部分皆以光學曝光進行圖形定義,利用濕式蝕刻將主動區以外的區域蝕刻移除,來達成元件間的電性隔離,並探討不同沉積後熱退火方式差異。成功製作出閘極寬度為 10 μm的元件,氧化層之氧化鋁/氧化鉿EOT為2 nm,氧化層沉積後快速熱退火之元件,其77 K低溫量測下次臨限擺幅為136 mV/dec,電流開關比達2.02 × 104,汲極關閉電流為3.54 × 10-5 μA/μm。而次微米尺寸穿隧式場效電晶體部分,閘極自我對準製程已開發。;Tunnel field effect transistors (TFETs) are attractive candidates to replace MOSFETs for low power application due to the ability to make device work with a lower supply voltage, without increase in OFF state currents. However, TFETs suffer from a low ON current using large bandgap silicon based materials. For this reason, III-V material based devices with high ON current have been considered. because of the high tunneling probability due to the narrow and direct bandgap. Therefore, III-V material based TFETs are studied in this thesis.
    There are two different epitaxy structures used in this study. In order to achieve the tunneling operation of n-type TFET, a heavily doped In0.53Ga0.47As is dedicated for source, n+- In0.53Ga0.47As is for drain, and undoped In0.53Ga0.47As is for channel in In0.53Ga0.47As homo-junction structure. And the type-II staggered gap heterojunction leads to high ON current, which a heavily doped GaAs0.12Sb0.88 is dedicated for source, n+- In0.95Al0.05As is for drain, and undoped In0.95Al0.05As is for channel.
    In this study, a wet etching method was applied to fabricate micro scale TFETs by mesa isolation etch to the InP substrate. Different annealing processes were studied for insulators including Al2O3/HfO2 (EOT of 2 nm) by ALD. The n-TFET with best current and S.S. performance is a device with drain length of 2 μm. The characteristics of this device demonstrated the lowest S.S. of 136 mV/dec, on/off current ratio of 2.02 × 104 and minimum OFF state leakage current of 3.54 × 10-5 μA/μm in low temperature measurement(77 K). Moreover, a the sub-micro TFETs fabrication with self-aligned gate technology have been developed.
    Appears in Collections:[電機工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明