English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119137      線上人數 : 1300
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74917


    題名: Application of a Brain Computer Interfacing System in Comparing Visual verses Haptic Induction of Motor Imaginary Task
    作者: 薩特亞;RATH, SATYASAMBIT
    貢獻者: 認知與神經科學研究所
    關鍵詞: 腦機介面;觸覺線索;視覺線索;共同空間型態;線性區辨分析;BCI;haptic cue;visual cue;Common spatial pattern;linear discriminant analysis
    日期: 2017-08-28
    上傳時間: 2017-10-27 16:11:57 (UTC+8)
    出版者: 國立中央大學
    摘要: 運用觸覺刺激的腦機介面,干擾認知功能運作的程度較運用視覺或聽覺刺激的腦機介面為低,而在現實世界中有很高的應用價值。先前文獻對於觸覺型腦機介面能否達到與視覺型相當的動作心像類型辨識率尚無結論;此外,運用極少量腦波頻道數是否能達到高動作心像類型辨識率亦屬未知。本研究試圖建立一個腦機介面架構,僅運用四個腦波頻道資訊來進行動作心像類型辨識,然後比較其辨識觸覺和視覺誘發動作心像時之正確率。我們發現應用共同空間型態(common spatial pattern)作為特徵提取器,以及線性區辨分析(linear discriminant analysis)為分類器(classifier),對觸覺與視覺誘發的左、右手動作心像區辨正確率是相當的;而僅運用C3、C4、Fp1、和Fp2四個頻道的情況下,觸覺與視覺型腦機介面的辨識正確率都可達到85%。本研究之發現可作為未來發展高效能動作心像辨識腦機介面系統之基礎。;Haptic-based Brain Computer Interface (BCI) has great values in real-world applications as it
    is less intrusive than visual or auditory based BCI. It is not clear from previous literature
    whether haptic-based BCI can achieve equivalent or even better accuracies when applied to the
    classification of motor imagery. In addition, it was also not clear whether high classification
    accuracy can be achieved in haptic cue based motor imagery BCI with few channels. The
    current study sets out to establish a BCI framework using only four channels for motor imagery
    classification, and to compare the accuracies between the haptic versus the visual cue based
    BCI. We demonstrated that using common spatial pattern (CSP) as feature extractor and linear
    discriminant analysis (LDA) algorithm as the classifier, the classification accuracy of the haptic
    cue based motor imaginary BCI can reach comparable level as the visual-based one. We also
    demonstrated that with only four EEG channels (C3, C4, Fp1, and Fp2), the mean accuracy of
    both haptic and visual cue based motor imaginary BCI can reach a high level (~ 85%). The
    current findings can serve as the foundation for efficient BCI implementation in motor imagery
    classification for future research and real-world applications.
    顯示於類別:[認知與神經科學研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML596檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明