English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78852/78852 (100%)
造訪人次 : 41808      線上人數 : 530
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/79622


    題名: 應用於衛星通訊之QFN封裝X-/Ku-Band 低雜訊放大器設計;QFN-Packaged X-/Ku-Band LNA Design for Satellite Communication Applications
    作者: 陳冠宇;Chen, Kuan-Yu
    貢獻者: 電機工程學系
    關鍵詞: 低雜訊放大器;Low-Noise Amplifier
    日期: 2019-01-28
    上傳時間: 2019-04-02 15:08:03 (UTC+8)
    出版者: 國立中央大學
    摘要: 本篇論文提出了三顆應用於衛星通訊之X-/Ku-Band低雜訊放大器電路設計,使用90-nm CMOS製程整合GIPD製程及0.15-μm GaAs pHEMT (P15)製程實現,擁有體積小、低雜訊與高增益等優點,並透過平面四邊無引腳(Quad Flat no-Lead,QFN)進行封裝,可以取代傳統LNB(Low Noise Block Downconverter)使用離散(Discrete)元件實現的放大器,達到縮小體積的目的。
    第一個低雜訊放大器電路設計,我們利用90-nm CMOS製程整合GIPD製程實現。利用GIPD製程具有高阻值矽基板及低損耗的優勢來設計被動元件,以提升被動元件的Q值,並透過覆晶技術整合兩種製程,以達到低雜訊操作之目的。量測結果顯示此低雜訊放大器可於9.8 GHz提供18.8 dB增益,雜訊指數為3.5 dB,IIP3三階截斷點為-7 dBm。當操作電壓為1.2 V時,功耗為17.5 mW。
    第二個低雜訊放大器電路設計,我們使用P15製程實現,並且使用QFN料件進行封裝,放大器擁有高增益、低雜訊指數、體積小等優點,且封裝後的晶片即可直接焊接於PCB(Print Circuit Board)與其他電路一起使用,非常具有實用性。為了確保封裝後的低雜訊放大器依然擁有良好的雜訊與功率匹配,我們使用3D電磁模擬軟體模擬QFN的寄生效應後,與LNA一同設計。量測結果顯示此低雜訊放大器擁有8.5 GHz-12.5 GHz的頻寬,可在9.7 GHz提供最高¬¬¬22.4 dB 之增益,在10.7 GHz雜訊指數僅有1.5 dB,IIP3 三階截斷點為¬¬¬¬-10 dBm,當操作電壓為1.1 V時,功耗¬為68.5 mW。
    第三個低雜訊放大器電路設計使用P15製程實現,擁有能夠接收水平(Horizontally)極化以及垂直(Vertically)極化訊號的功能,並且使用QFN封裝雙極化低雜訊放大器,藉由控制第一級放大器的偏壓選擇不同埠的訊號,且擁有高增益、低雜訊指數、低功耗、體積小等優點,封裝後的晶片可直接焊接於PCB上與其他電路一起使用,非常具有實用性。量測結果顯示此低雜訊放大器水平埠與垂直埠均擁有10.7 GHz-13.2 GHz的頻寬,在12 GHz提供最高¬¬20.8 dB與21.5之增益,在頻帶中雜訊指數最低約為1.35 dB,IIP3三階截斷點分別為¬¬-11 dBm與-10 dBm,當操作電壓為1 V與0.8 V時,功耗為¬32.8 m W。
    ;In this thesis, three high-gain, low-noise, and compact X-/Ku-Band low-noise amplifiers (LNA) for the satellite communication application are proposed. These LNAs are realized in a 90-nm CMOS technology combined with GIPD process and 0.15-μm GaAs pHEMT technology with Quad Flat no-Leads (QFN) packaging. Replacing the discrete amplifiers in the Low Noise Block Downconverter (LNB) is to make the system more compact.
    The first LNA design is realized in a 90-nm CMOS technology combined with GIPD process. Some of the passive components are designed on the GIPD process. Using the low metal loss substrate is to realize high quality factor of the passive components. Combining the 90-nm CMOS and GIPD process by using flip chip technique is to minimize the noise figure. The proposed LNA can provide power gain of 18.8 dB at 9.8 GHz and the minimum NF of 3.5 dB in the measurement. The IIP3 is -7 dBm. The power consumption is only 17.5 mW from a 1.2-V supply.
    The second LNA design is realized in a 0.15-μm GaAs pHEMT technology with Quad Flat no-Leads (QFN) packaging. This is a low-noise, low-power consumption, high-gain, and compact LNA. This packaged LNA can be directly welded on the print circuit board (PCB) and be able to work with other circuits. The parasitic effect of the QFN packaging is completely characterized by using a 3D electromagnetic simulator and then is co-designed with the LNA to ensure simultaneous noise and impedance matching at the desired frequency band. The proposed packaged LNA exhibits measured power gain of 22.4 dB at 9.7 GHz while having 3-dB bandwidth from 8.5 to 12.5 GHz. The minimum NF is 1.5 dB at 10.7 GHz. The power consumption is only 68.5 mW from a 1.1-V supply.
    The third LNA design is realized in a 0.15-μm GaAs pHEMT technology with Quad Flat no-Leads (QFN) packaging. The LNA is able to support the reception of dual horizontally (H) and vertically (V) polarized signals, increasing the channel capacity. This is a low-noise, low-power consumption, high-gain, and compact LNA. This packaged LNA can be directly welded on the print circuit board (PCB) and be able to work with other circuits. The proposed QFN-packaged LNA can provide power gain of 20.8 and 21.5 dB while having 3-dB bandwidth from 10.7 to 13.2 GHz and minimum NF of 1.35 dB for the H- and V-polarization channels respectively. The IIP3 is -11 dBm and -10 dBm for the H- and V-polarization channels respectively. The power consumption is only 32.8 mW from a 1-V and 0.8-V supply.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML188檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明