在這篇文章中,我們討論R^n上特定的section,就是固定x為中心、以√t為半徑的球體B(x,√t),其勒貝格測度等價於t^(n/2),因此可以考慮關於此section的非齊性F_pq^s (R^n ),當任意兩點x,y滿足|x-y|≥1時,Monge-Ampère奇異積分算子H有|D_0 HD_0 (x,y)|≤|x-y|^(-2)的條件,即可證明H在F_pq^s (R^n )上有界。;In this paper, we consider the special section on R^n, which is a ball centered at with radius √t, and the Lesbegue measure of this section is equivalent to t^(n/2). Then, define the inhomogenous Triebel-Lizorkin space F_pq^s (R^n ) associated with such sections, and show that the Monge-Ampère singular integral operator H is bounded on F_pq^s (R^n ) if |D_0 HD_0 (x,y)|≤|x-y|^(-2) for any x,y∈R^n,|x-y|≥1.