本論文使用穩懋半導體公司(WINTM)所提供之0.25-µm GaN/SiC 製程以及0.15-µm InGaAs pHEMT 製程,分別進行n79頻段之連續F類功率放大器以及Ka頻帶之反F類功率放大器之設計。 第二章提出n79頻段之氮化鎵連續F類功率放大器,從挑選偏壓直流的方式,改善AM-AM與AM-PM的線性度,來緩解氮化鎵的軟性增益壓縮(soft gain compression)特性,輸出匹配電路利用連續F類技術的方式,達成基頻、二次諧波與三次諧波的匹配,來達到寬頻且高效率之功率放大器。量測結果顯示最佳傳輸增益為22.3 dB,3-dB頻寬為3.9 - 5.0 GHz,飽和輸出功率為 38.4 dBm,功率附加效率最高可達 40.7 %,晶片面積為4.75 (2.73 × 1.74) mm2。 第三章提出 Ka 頻帶之反F類砷化鎵功率放大器,透過級間匹配,擴展頻寬,達到較寬的頻寬,輸出匹配電路採用反F類架構,達到寬頻且高效率之功率放大器。量測結果顯示最佳功率增益為13.5 dB,3-dB頻寬為23.1 - 31.5 GHz,飽和輸出功率為 26.5 dBm,功率附加效率最高可達 33.3 %,晶片面積為0.98 (1.32 × 0.74) mm2。;The thesis developed two power amplifiers that were designed in WINTM 0.25-µm GaN/SiC, and 0.15-µm GaAs processes. The first design is a continuous Class-F mode power amplifier for n79 band operation in GaN/SiC process and the second one is an inverse Class-F mode power amplifier for Ka Band operation in 0.15 m GaAs pHEMT process. Chapter 2 presents a continuous Class-F mode power amplifier for n79 band in GaN/SiC process. By selecting proper quiescent bias current, the nonlinearities, such as AM-AM and AM-PM distortions, can significantly be reduced. The amplifier achieved high efficiency and broadband performances by using continuous Class-F mode output matching network which is matched for the fundamental, second harmonic, and third harmonic impedances. The measurement results achieved a peak power gain of 22.3 dB, a 3-dB bandwidth from 3.9 to 5.0 GHz, a saturated output power of 38.4 dBm, and a peak power added efficiency up to 40.7 %. The chip area is 4.75 (2.73 × 1.74) mm2.