English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43797669      線上人數 : 1102
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/91850


    題名: 基於分層注意力網路之 預測併購成敗;Predicting the Success or Failure of Mergers and Acquisitions Based on Hierarchical Attention Networks
    作者: 洪培紋;HONG, PEI-WEN
    貢獻者: 工業管理研究所
    關鍵詞: 併購;深度學習;文本分析;分層注意力網路;Mergers and acquisitions;Deep learning;text analysis;Hierarchical Attention Network
    日期: 2023-07-18
    上傳時間: 2024-09-19 14:37:26 (UTC+8)
    出版者: 國立中央大學
    摘要: 併購是企業中可以達到永續經營的手段。然而之前很少人探討關於預測併購交易是否成功的研究。因此,如果在公司要進行併購交易之前,能夠有一個預測模型,來預測併購後成功與否。不僅可以讓公司的管理者在併購決策上提供幫助,也可以讓投資者做出更明智的投資決策。
    本論文結合文本與數值特徵預測併購成敗。從10-K文件中的管理層討論與分析(MD&A)來提取文本特徵,透過分層注意力網路來建構文本向量,並使用公司每三年的MD&A所計算的MD&A時間變化量,以及結合15項財務指標,來當作模型的輸入因子,使用貝氏神經網路進行訓練。
    本研究旨在預測併購成功,然而在實驗結果的表現不如預期,可能來自內部因素或外部因素的影響,包括財務狀況、併購策略等原因,因此只使用財務指標或加入文本數據來進行預測,有可能造成預測結果不準確。應當將影響併購的因素更全面化地考慮,並透過特徵選取,提取只對預測併購成功有影響的特徵進行訓練,並在做出最終決策之前,綜合考慮各個模型的結果、相關領域的專業知識以及市場情況等多方面的信息。;Mergers and acquisitions are the means by which enterprises can achieve sustainable operation. However, little research has been done on predicting the success of M&A deals before. Therefore, if the company is going to conduct an M&A transaction, it can have a predictive model to predict whether it will be successful after the M&A transaction. Not only can the company′s managers provide assistance in M&A decisions, but it can also allow investors to make more informed investment decisions.
    This paper combines text and numerical features to predict the success or failure of mergers and acquisitions. Extract text features from the management discussion and analysis (MD&A) in the 10-K file, construct the text vector through Hierarchical Attention Network, and use the MD&A time change calculated by the company′s MD&A every three years, and combine 15 financial indicators are used as the input factors of the model, and use Bayesian neural network to train model.
    This study aims to predict the success of mergers and acquisitions. However, the performance of the experimental results is not as expected, which may come from internal factors or external factors, including financial conditions, merger strategies and other reasons.
    Therefore, only using financial indicators or adding text data to forecast may cause inaccurate forecast results. The factors affecting mergers and acquisitions should be considered more comprehensively, and through feature selection, only the features that have an impact on predicting the success of mergers and acquisitions should be extracted for training. And before making a final decision, comprehensively consider the results of various models, professional knowledge in related fields, and market conditions and other information.
    顯示於類別:[工業管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML31檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明