English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41636662      線上人數 : 1153
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/93155


    題名: 應用混合式前處理與 IPF 過濾器之集成式學習 於軟體缺陷預測;An Application of Hybrid-Sampling and Iterative-Partitioning Filters for Ensemble Learning in Software Defect Predictio
    作者: 林庭伊;Lin, Ting-Yi
    貢獻者: 資訊管理學系
    關鍵詞: 軟體缺陷預測;混合採樣;集成學習;迭代分層過濾器;欠採樣;過採樣;Software Defect Prediction;Synthetic Sampling;Ensemble Learning;Iterative Partitioning Filter;Under-sampling;Over-sampling
    日期: 2023-07-11
    上傳時間: 2024-09-19 16:44:46 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著軟體規模的增長,測試成本也會越來越高,為避免測試階段造成軟體缺陷的檢
    查遺漏而導致嚴重後果,機器學習開始被使用於軟體缺陷預測(Software Defect
    Prediction ,簡稱 SDP) 並嘗試與現今的自動化測試工具結合,利用機器學習協助且及
    早定位容易出現錯誤的模組,藉此將測試資源集中於特定的專案模組上,讓企業得以利
    用更低成本,產出更高品質的產品。本研究使用 EE-IPF(EasyEnsemble +Iterative Partitioning Filter, IPF 迭代分層過濾器)架構與三種不同過採樣方式結合,分別為
    Polynom-fit-SMOTE 、ProWsyn 、SMOTEIPF 形 成 Hybrid-EE-IPF 架構應用於 SDP 領
    域。希望藉由此方式改善 EasyEnsemble 模型中單一隨機欠採樣上可能造成資訊缺失與
    少類學習特徵不足的問題,且不同於過往 SDP 研 究使用單一 IPF 過濾器過濾雜訊資料
    點,而是將多個過濾器與集成模型結合,以提升各 基底分類的多樣性,進而改善軟體
    缺陷上的預測表現。;As software scales become larger, the cost of testing also increases. To avoid the risk of
    missing software defects during the testing phase and resulting serious consequences, machine
    learning has been applied to software defect prediction (SDP) to assist in early identification of
    defect modules. This enables testing resources to be focused on specific project modules,
    allowing enterprises to produce higher-quality products at lower costs. In this study, the EE IPF (EasyEnsemble + Iterative-Partitioning Filter) architecture is combined with three different
    oversampling methods, namely Polynom-fit-SMOTE, ProWsyn, and SMOTEIPF, to form the
    Hybrid-EE-IPF structure for SDP. This study aims to alleviate the problem of data loss and
    insufficient learning features caused by single random under-sampling in the EasyEnsemble
    model and noisy data points in the SDP dataset. Unlike previous SDP studies that used a single
    IPF filter to filter noisy data points, multiple filters are integrated with the ensemble model to
    improve the diversity of base classifiers and enhance the prediction performance of software
    defects.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML14檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明