English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43993570      線上人數 : 1012
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95491


    題名: 探討特徵選取法應用於飛機油耗效能預測之研究;Exploring Feature Selection Techniques for Predicting Aircraft Fuel Efficiency Performance
    作者: 王柔蘋;Wang, Jou-Ping
    貢獻者: 資訊管理學系在職專班
    關鍵詞: 特徵選取;回歸預測;飛機性能監控;引擎衰退;Feature Selection;Regression Prediction;Aircraft Performance Monitoring;Engine Degradation
    日期: 2024-07-10
    上傳時間: 2024-10-09 16:54:13 (UTC+8)
    出版者: 國立中央大學
    摘要: 在本研究中探討了航空公司面對高燃油成本的挑戰及其在全球經濟中的關鍵角色, 如何透過精準的燃油管理和飛機性能監控來優化操作效率。引入預測性健康管理(PHM) 和飛機性能監控計劃(APM)觀念,並透過監測設備實時收集飛機性能數據並比較實際 性能與標準性能,識別性能差異,提供對飛機當前狀況的評估。 本文主要研究動機源於現有飛機性能監控計畫收集的大量數據,這些數據指出了飛機性 能的退化,但未能明確指出關鍵影響因素。透過資料探勘技術,我們旨在識別出影響飛 機性能衰退的關鍵特徵,從而提供更精確的維護建議和操作優化策略。
    為達上述目的,本研究進行三個不同主題的對照實驗,飛機機齡、飛行航程長度和 季節,來探究其對飛機性能的影響。研究中採用過濾器、包裝器和內嵌法這三種特徵選 取模型進行比較,並搭配隨機森林回歸與支持向量回歸預測方法,來確定關鍵特徵和評 估模型表現。
    研究結果展示了不同特徵選取方法與預測模型組合對改善航機燃油效率預測模型 的影響。本研究證實上述方法能減少模型的複雜性,同時維持或提升預測的精確度。高 維度的 APM 資料保持較高的預測精度,但使用較少的關鍵特徵同樣能夠達到接近完整 數據集的預測效果,降低資料處理的複雜度並提升分析效率。
    本研究提供了一個全面的方法來分析和優化飛機性能,並有效識別出影響飛機性能 的關鍵特徵,旨在幫助航空公司更有效地管理燃油成本和提高運營效率,同時確保飛行 的安全性。;This study investigates the impact of high fuel costs on airlines and their significant role in the global economy, focusing on enhancing operational efficiency through precise fuel management and aircraft performance monitoring. We introduce Predictive Health Management (PHM) and Aircraft Performance Monitoring (APM), utilizing real-time monitoring tools to gather data and identify discrepancies by comparing actual aircraft performance against benchmarks.
    Motivated by the extensive data from aircraft performance monitoring, which highlights performance degradation without clarifying the causes, we employ data mining techniques to pinpoint key factors affecting aircraft performance. This enables more precise maintenance recommendations and optimization of operations.
    Our research involves controlled experiments related to aircraft age, flight distance, and seasonality to assess their effects on performance. We analyze the efficacy of three feature selection models—filter, wrapper, and embedded methods—combined with Random Forest and Support Vector Regression to identify critical performance features.
    The research results show that these methods reduce model complexity while maintaining or enhancing accuracy. High-dimensional APM data provides high prediction accuracy, but using fewer key features achieves similar results, reducing data processing complexity and improving analysis efficiency.
    This study aims to help airlines manage fuel costs effectively and enhance operational efficiency while prioritizing safety, providing a thorough approach to aircraft performance optimization.
    顯示於類別:[資訊管理學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML61檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明