在這篇論文中,我們從理論上研究了具有週期性空缺的鋸齒型石墨烯納米帶(ZGNRs)的熱電性質,這些空缺起到反量子點的作用。具有週期性空缺的 ZGNRs 可作為石墨烯量子點陣列(GQDAs)。這些 GQDAs 能夠產生亞能帶和能隙。我們研究了不同金屬電極(包括銅、金、鉑、鈀和鈦)對 GQDAs 熱電性質的影響包括線接觸和面接觸。 我們發現,在室溫下,當金屬電極在扶手型邊緣進行線接觸時,功率因子可以達到一維系統理論限制的 76%。在這種情況下,GQDAs 展示出串聯式耦合量子點(SCQDs)的特性。相反,當金屬電極在鋸齒邊緣進行接觸時,GQDAs 表現出類似於平行量子點的特性。此外,當金屬電極與具有週期性空缺的 ZGNRs 表面接觸時,我們的分析展示了傳輸係數中觀察到的分子般的傳輸性質。 ;In this thesis, we have undertaken a theoretical exploration of the thermoelectric properties of zigzag graphene nanoribbons (ZGNRs) with periodic vacancies, serving as anti-quantum dots. These ZGNRs, characterized by periodic vacancies, effectively operate as graphene quantum dot arrays (GQDAs), capable of introducing subbands and band gaps. We investigate the impact of line and surface contacts with various metal electrodes (including copper, gold, platinum, palladium, and titanium) on the thermoelectric properties of these GQDAs. Our findings reveal that at room temperature, the power factor can reach up to 76% of the theoretical limit for one-dimensional systems when metal electrodes establish line contact at the armchair edges. Under such circumstances, GQDAs demonstrate features akin to serially coupled quantum dots (SCQDs). Conversely, when metal electrodes make contact at the zigzag edges, GQDAs exhibit characteristics reminiscent of parallel quantum dots. Furthermore, our analysis showcases the molecular-like transport properties observed in the transmission coefficient when metal electrodes are surface-contacted with ZGNRs featuring periodic vacancies.