中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/88174
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41639845      在线人数 : 1252
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/88174


    题名: 以人體姿態識別ATM提款動作之研究;Research on ATM Withdrawal Action by Human Activity Recognition
    作者: 鄧俊祥;Deng, Jun-Xiang
    贡献者: 企業管理學系
    关键词: 車手;openpose;lstm;atm;money mule;openpose;lstm;atm
    日期: 2022-03-14
    上传时间: 2022-07-13 18:23:48 (UTC+8)
    出版者: 國立中央大學
    摘要: 人體姿態識別在近年來廣泛的應用在醫療、運動、嬰兒老人監控以及犯罪監視等 等,而在目前人體姿態識別上較多人使用的為 Openpose,因為它有著簡易的特性, 不需要高階攝像頭,以普通 2D 的 RGB 圖像即可達成關節點估計,不僅僅可以偵測身 體支點,同時也可以偵測手部以及臉部關節點。本研究將此運用於車手和非車手的 ATM 提領影片中,再透過和專業警員的訪談,得出車手在 ATM 提領時的動作特徵, 分別為插卡、看手機、左顧右盼、取錢和清點等等,然而將影片所得出之座標點轉換 為特徵值,以特徵值的方式去描述 ATM 提領的動作特徵,又因所述動作特徵在影片裡 佔比偏低,資料有不平衡情況,所以本研究透過 n gram 以及 undersampling 的方式, 利用深度學習模型雙向 LSTM(Long Short-term memory 長短期記憶模型)進行判 斷,以追求較高的精確率和召回率。;In recent years, human activity recognition(HAR) has been widely used in health-care, sports, baby and elderly monitoring and crime surveillance, etc. At present, Openpose is used by most people in HAR, because it has simple characteristics and does not A high-level camera is needed, and the joint point estimation can be achieved with ordinary 2D RGB images. It can not only detect the body joint, but also the hand and face joint points. Our study applies Openpose to the ATM withdrawal videos of moneymule and non-moneymule, and then through interviews with professional police officers, we can get the characteristics of the driver′s actions when withdrawing from the ATM. It including inserting a card, looking at the phone, looking around, and withdrawing money,and counting, etc. However, we convert the coordinate points obtained from the film into feature, and describe the action characteristics of ATM withdrawal in the form of feature. Also, because the action features occupy a low proportion in the video, the data is imbalance, so we use the deep learning model, bi-LSTM (Long Short-term memory model) to make evaluate in the way of n gram and undersampling, in order to pursue a higher precision and recall rate.
    显示于类别:[企業管理研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML51检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明