有鑑於現今半導體工業金屬氧化閘極的微縮製程,傳統使用的介電材料如二 氧化矽,因為其介電常數所造成的漏電問題,取而代之的高介電常數材料的開發變得極為重要。相較於無機物的高介電常數材料,有機材料的低成本、製程多元以及物化性質豐富的特性吸引了眾多學者紛紛投入此研究領域。在西元 2022 年,Kim 等人已成功合成非晶向氫化石墨稀並測試其介電性質成為一有潛力的高介電常數有機材料。借鑑其研究,本實驗室以氫化石墨稀出發,參考理論模擬結果,希望透過電容耦合式化學輔助電漿汽相沉積系統,於乙炔低溫電漿中製造出氫化石墨稀,並透過電漿瓦數改變其晶格構造及薄膜組成,深入研究氫化石墨稀的形成過程以及其介電特性。透過光致發光光譜、拉曼光譜、傅立葉紅外轉換光譜以及金屬-絕緣體-金屬(MIM)之電容量測,本研究成功在低溫乙炔電漿中製造高介電常數(K=32.3)的氫化石墨稀薄膜,更在其電性上觀察到已被理論模擬證實之鐵電材料的性質。 ;In this decade, high-k material has been widely developed because of its necessary toward narrowing transistor gate length. Unlike traditional silicon dioxide, organic material has drawn lots of attentions due to its low-cost and unique physiochemical properties. In these two years, hydrogenated amorphous graphene has been successfully fabricated as a high-k dielectric material while graphene is a well-known semimetal. Furthermore, there are lots of researches showed hydrogenated graphene has special properties like bandgap tuning or ferromagnetism. In this report, we want to follow hydrogenated amorphous graphene step to find if hydrogenated graphene can be fabricated as a high-k dielectric material by Raman, Metal-Insulator-Metal (MIM) C-V measurement and FTIR analysis