中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/95666
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41647721      線上人數 : 2279
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/95666


    題名: 整合預測分析與學習儀表板以提升準時畢業率: 以印尼高等教育為例;Integrating Predictive Analytics and Learning Dashboards to Improve Graduation Timeliness: A Study of Higher Education in Indonesia
    作者: 馬恆達;Pawitra, Mahendra Astu Sanggha
    貢獻者: 網路學習科技研究所
    關鍵詞: 準時畢業;教育數據探勘;校務研究;學習分析儀表板;機器學習;On-time graduation;Educational data mining;Institutional research;Learning analytics dashboard;Machine learning
    日期: 2024-07-29
    上傳時間: 2024-10-09 17:08:01 (UTC+8)
    出版者: 國立中央大學
    摘要: 對於高等教育機構和學生而言,按期完成學業是重要的指標,它代表著教育體系的效率和學生的成就。不過,辨識和解決延誤畢業的問題仍然是一項艱鉅任務。這項研究屬於教育資料挖掘範疇,目的在於結合機器學習技巧以調查哪些人口統計和學習行為因素會影響學生準時畢業。研究中還建立了學習分析的儀表板工具,旨在為教育管理者、教師及學生等關鍵群體提供預測畢業時間的見解及數據呈現功能。
    本研究中的數據集源於印尼某高等教育機構的工程系所,涵蓋133位學生在2019至2023年四個學年的資料。進行數據清理後,即使用該記錄來進行研究。此項目採用CRISP-DM方法進行教育數據挖掘,並在創建學習分析儀表板系統時遵循瀑布模型。研究中結合了監督式與非監督式的機器學習技術。在監督式學習階段,開發多種模型如決策樹、kNN、SVM、樸素貝葉斯、隨機森林、邏輯回歸、梯度提升、隨機梯度下降和神經網路來預測學生的按時畢業率。而非監督式學習階段則使用K均值算法將學生分成三群。最終,在網站上部署的系統依ISO/IEC 25010標準,在WebQEM評價系統中根據可用性、功能性、效率和可靠性進行評估。
    研究結果指出,學生的累積平均績點(CGPA)、第四學期的GPA 以及在程式設計、社會科學和英文能力測驗上的表現,是影響是否能按期畢業的主要學術變量。另外,在人口統計變數方面,性別、家長職業、高中專攻領域以及課外活動的參與程度,也顯著影響了學生按期畢業的可能性。模型建構的結果表明,隨機森林模型在評估指標上超過其他模型,展示出85%的分類準確率和88%的AUC(接收者操作特徵曲線下的面積)。效能測試揭示了系統平均的性能得分為82.2%,架構得分則為87.6%,並且在GTmetrix上獲得B等級評價。可靠性測試通過對線上部署網站進行壓力測試,無論在何種條件下都實現了100%的成功率。經過資深軟體工程師進行黑盒測試的功能性評估亦顯示了99.4%的高成功率。此外,根據可用性調查問卷的結果,開發的系統對教育工作者和學生而言是實用、容易學習、易於使用以及令人滿意的。整題而言,本研究提供了準時畢業的關鍵因素及所開發系統的寶貴見解,並為未來相關研究提出了結論與建議。
    ;Graduating on schedule is a critical milestone for students in higher education institutions, reflecting both institutional effectiveness and student success. However, identifying and addressing factors that may delay timely completion poses significant challenges. This study is educational data mining research that aims to investigate the factors of on-time graduation in both students’ demographics and learning performance aspects by integrating machine learning approach. Furthermore, this study also develops a learning analytics dashboard which provides forecasts about on-time graduation and presents data visualization resources useful for various educational stakeholders including school officials, teachers, and students.
    The dataset was collected from the academic system of an engineering department at a higher education institution in Indonesia. After the data cleaning process, it used 133 students’ recorded data for over four years of academic calendar years from 2019 to 2023. The method used in the educational data mining process of this research is CRISP-DM (Cross-Industry Standard Process for Data Mining) with the waterfall model implementation on the development of the learning analytics dashboard system. In the educational data mining process, this research used both supervised and unsupervised machine learning. For supervised learning, researchers build several machine learning models to predict on-time graduation, such as Decision Tree, kNN, SVM, Naïve Bayes, Random Forest, Logistic Regression, Gradient Boosting, Stochastic Gradient Descent, and Neural Network. Meanwhile, the unsupervised using K-Means algorithm divides students into three clusters. Furthermore, the developed system which has been deployed on the website was assessed with the ISO/IEC 25010 standard in accordance with the WebQEM standard factors such as usability, functionality, efficiency, and reliability.
    The results showed that CGPA, GPA 4th semester, Programming, Social Science, and English proficiency score are variables with the most importance toward on-time graduation from the student’s learning performance information. From the demographic, student’s information about gender, parents’ occupation, high school major, and extracurricular involvement are the relevant variables which have high influence toward on-time graduation. The modeling process showed that Random Forest outperformed other models in the evaluation metrics with 85% Classification Accuracy and 88% AUC (Area Under ROC Curve). For the developed system performance, efficiency test results show 82.2% average Performance Score and 87.6% average Structure Score which give an overall Grade B of GTmetrix. The reliability test conducted stress testing to the deployed website delivered a 100% success rate in various scenarios. The functionality testing using BlackBox testing by experienced software engineers produced a 99.4% success rate. The insights obtained from the usability evaluation, through the administration of a usability questionnaire, provided proof that the developed system is considered beneficial, user-friendly, straightforward to learn, and satisfying for both educators and students. Overall, the result of this study contributes valuable implications toward on-time graduation factors and the developed system along with the conclusions and suggestions for future research.
    顯示於類別:[網路學習科技研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML24檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明