English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119010      線上人數 : 1237
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/11569


    題名: 資料挖掘技術應用於發展個人化推薦之評估研究─以國內某超級市場為例;An Evaluation Study of Applying Data Mining Techniques in Developing Personalized Recommendation
    作者: 李坤宏;Kun-Hung Li
    貢獻者: 企業管理研究所
    關鍵詞: 推薦準確度;個人化推薦系統;顧客區隔;序列樣式挖掘;資料挖掘;Sequential Pattern Mining;IBM Intelligent Miner;Recommendation Accuracy;Personalized Recommender System;Behavioral Segmentation;Demographic Segmentation;Customer Segmentation;I-PrefixSpan Algorithm;Data Mining
    日期: 2003-06-19
    上傳時間: 2009-09-22 14:24:37 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 一般而言,顧客關係管理(CRM)對企業相當有利,而首要工作即區隔顧客,以提供客製化的產品與服務。然而,市場區隔的方式有很多,如何設計適當的區隔方法相對較為重要。再者,推薦系統即用來推薦產品給顧客,並提供相關資訊以利顧客購物。如果推薦系統特別因個人而設計,則顯得較為合適且簡潔。本研究的目的,即提供個人化產品推薦的方法,以在最適當的時機推薦最適當的產品,並針對由人口統計變數與行為變數為基礎的推薦,來評估其差異。本研究運用了兩種資料挖掘的技術:以IBM Intelligent Miner來區隔顧客,並以I-PrefixSpan演算法,在每個集群挖掘出時間間隔的序列樣式。結果指出以行為變數為基礎的推薦,比人口統計的更為準確。 It is recognized that customer relationship management (CRM) is the key point to benefit business, and the first task is to segment customers for providing customized products and services. However, the ways of market segmentation are of variety, and how to design the proper way to separate customers is more significant relatively. Also, recommender systems are used to suggest products to their customers and to provide consumers with information to help them purchase. If the recommendation is specifically designed for individuals, it will be more suitable and concise. The aims of our study are to suggest a method of personalized product recommendations to recommend appropriate products at appropriate time, and to evaluate the difference of recommendations based on demographic and behavioral segmentations. We employed two techniques of data mining: IBM Intelligent Miner to cluster the customers, and I-PrefixSpan algorithm to discover time-interval sequential patterns in every cluster. Results indicated the recommendation based on behavioral segmentation is more accurate than that based on demographic segmentation.
    顯示於類別:[企業管理研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明