English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43370313      線上人數 : 1344
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/59970


    題名: 以關鍵商品分辨VIP客戶之研究;Discovering Key Products to Identify VIP Customers
    作者: 鄭承祐;Cheng,Cheng-Yu
    貢獻者: 企業管理學系
    關鍵詞: 資料探勘;RFM分析;顧客關係管理;Data mining;RFM analysis;customer relationship management
    日期: 2013-06-24
    上傳時間: 2013-07-10 11:53:31 (UTC+8)
    出版者: 國立中央大學
    摘要: 在現今激烈的商業環境中比競爭對手更快掌握顧客的需求是企業獲利的關鍵。企業為了瞭解客戶的需求以及消費模式,常利用資料探勘(Data mining)中的關聯法則(Association rules)去分析出客戶的購買習慣,也就是俗稱的購物籃分析(Market-basket analysis)。利用購物籃分析我們可以了解該在何時對何種顧客進行何種促銷計畫,進而發展出更周全的客戶關係管理機制(Customer relationship management)。
      以往的購物籃分析方法,或許能準確地分辨客戶的屬性,但是在顧客對於企業的貢獻程度方面則較無著墨。本論文則是藉由分析VIP顧客的購物行為進而發現關鍵商品。藉此關鍵商品預測為來購買此商品的客戶是否為VIP顧客。
      本論文實驗的結果總共找到四項關鍵商品。每項關鍵商品在驗證資料中對VIP顧客的區別比率皆在60%以上,其中兩項關鍵商品更可以高達70%以上。 意即購買到關鍵商品的顧客,有60%以上的機率是我們欲開發的VIP顧客。因為本論文研究僅需要可辨識的會員編號,所以對於僅有會員編號的匿名資料探勘方法亦有相當的貢獻。

    In today's competitive business environment faster than competitors to grasp the needs of customers is the key to create corporate profits. In order to understand customers’ needs and consumption patterns, enterprises usually using Data Mining and association rules to analyze customers' buying habits, also known as market basket analysis. We can use market basket analysis to understand what the customers' want and carry on propriety promotion plans, furthermore we can develop a customer relationship management strategy.
    Ordinary thesis about basket analysis may be able to accurately identify the customer's property, but the contribution of the customer for the enterprise is no mention.
    By using the aforementioned method In this paper, we total find a of four key commodities. Each key products in the testing data for VIP customers distinction ratios are more than 60%, of which two key products but also up to 70% or more. This means that customers buy key products, which are more than 60% probabilities who we want to develop a VIP customer. Because this thesis requires only recognizable membership number, so the only member number anonymous data mining methods are also considerable contributions.
    顯示於類別:[企業管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML721檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明