English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 24722326      Online Users : 332
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/64416

    Title: 以Beta分配的方法在推薦系統中找出被惡意攻擊的產品之研究
    Authors: 顏貝芬;YEN,PEI-FEN
    Contributors: 企業管理學系
    Keywords: 推薦系統;攻擊模型;偵測攻擊;Beta分配
    Date: 2014-06-11
    Issue Date: 2014-08-11 18:19:05 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 推薦系統的使用隨著電子商務的急速成長而被廣泛地運用在各行各業,推薦系統可以協助使用者在複雜的環境中做決策,其主要是根據推薦系統本身對使用者和推薦的項目的瞭解,進而推薦項目給使用者,藉此幫助消費者快速找到他們可能會感興趣的資料或產品,其中最常被推薦系統採用的推薦方法為協同過濾式,然而,由於推薦系統處在一個開放式的環境裡,很容易被惡意的攻擊者在評分資料中注入假資料,也就是製造不實的評分、意見或評論,企圖推升或打壓某些項目。


    ;With the rapid growth of e-commerce, Recommender system is widely used in various walks of life. Recommender systems can help users make decisions in a complex environment, which is mainly based on the understanding of user and item by Recommender system, and then recommend the item to the user. Thereby helping consumers quickly to find the information or products they may be interested in. The most commonly recommended method is Feature-based Filtering. However, due to the recommender system is in an open type of environment, malicious attacker is easy to inject false information into the rating data, which means manufacture false ratings, opinions or comments to push up or suppress certain items.

    In recent years, many detection algorithms have been proposed, however the application of these methods are still subject to different restrictions. For instance, the related papers of the PCA-based method have good results, but its drawback is that the PCA-based cannot handle missing values, leading to a great error. In addition, the use of statistical methods in doing SPC (Statistical Process Control) data clustering, you need a long-term cumulative data for each item in order to make a meaningful grouping and thus the training data.

    In this study, we made use of the characteristics of the Beta distribution method to design attack detection. This method can solve the problem of missing values, besides, data clustering does not need to accumulate large amounts of data for some time and it can detect the products which is attacked. In addition, there are other in the past scholars are assuming that the attacker only attacks one target item in the user data, this study simulated lots of attackers attack multiple targets in the experiment. Beta distribution method for the Detection rate is over 70%, the False alarm rate is between 10% to 20%.
    Appears in Collections:[企業管理研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明