English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24680631      Online Users : 236
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/71461

    Title: 特殊事件發生期間產生之情緒效應對微網誌產品推薦效果之影響;The Effect of Event Sentiment on Product Recommendation in a Microblog Platform
    Authors: 魏天昊;Wei,Tien-Hao
    Contributors: 企業管理學系
    Keywords: 特殊事件;情緒;微網誌;Plurk;產品推薦;event;sentiment;microblog;Plurk;product recommendation
    Date: 2016-06-20
    Issue Date: 2016-10-13 13:05:52 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 中文摘要
    特殊事件的發生和人類情緒之間有著緊密的關聯性,情緒字詞是人們用來有效描述特殊事件的重要媒介(Kolya et al., 2011),社群網站的使用者情緒會因為現實世界中特殊事件的發生而產生明顯差異(Kramer, 2010; Choudhury et al., 2008)。透過社群網站所蘊含的大量情緒成分,本研究針對事件情緒、發文情緒和產品推薦情緒進行探討,並分析如何利用情緒變數來引起使用者對於產品推薦的點擊興趣。
    為了解情緒如何影響推薦效果,本研究使用微網誌平台Plurk配合卓淑玲、陳學志、鄭昭明(2013)的中文情緒詞庫,以情緒關鍵字為根據來判斷使用者的發文情緒,同時利用情緒字詞為產品推薦的依據,並且進一步透過T檢定、one-way Anova、two-way Anova探討不同情緒變數對於產品推薦效果的影響。
    藉由本研究的結果,能有效幫助服務或產品供應商在特殊事件發生期間進行社群行銷,以利用情緒變數的方式有效吸引社群網站用戶對廣告的點擊興趣,進而達到提升產品推薦效果的目標。;Sentiment and Event are two abstract entities closely coupled with each other. Sentiment terms are important medium that people can describe events(Kolya et al., 2011). The occurring of events will bring significant difference in user sentiment of social media(Kramer, 2010; Choudhury et al., 2008).Through the sentiment component of social media, our research focus on the sentiment of event, user posts and product recommendation. We analyze sentiment variables and discuss how to arouse user attention in order to improve the effectiveness of social marketing.
    In order to realize the influence of sentiment, we apply the microblog platform Plurk in line with Chinese sentiment lexicon provided by Jhuo et al. (2013). Based on sentiment lexicon, we extract and classify user sentiment according to sentiment keywords emerge in posts. Apart from this, we use the lexicon as foundation of product recommendation to observe the influence of sentiment words.
    Under the influence of positive event, our results show that negative posts and positive recommendation are more effective to product recommendation. Besides, negative recommendation under the positive posts will bring the most effective outcome. On the other hand, under the influence of negative event, our results show that negative posts and negative recommendation are more effective to product recommendation. Besides, negative recommendation under the negative posts will bring the most effective outcome.
    Through the experiment results, service or product suppliers can use sentiment variables on social marketing during event period to achieve better quality of product recommendation.
    Appears in Collections:[企業管理研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明