English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625234      線上人數 : 1909
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/83377


    題名: 基於DBSCAN及Cox存活分析模型進行零售業顧客流失預測;Customer Churn Prediction applying to Retailer using DBSCAN and Cox Proportional Hazards Model
    作者: 林家鋒;Lin, Chia-Feng
    貢獻者: 企業管理學系
    關鍵詞: 資料探勘;存活分析;DBSCAN;Cox比例風險模型;DBSCAN;Cox Proportional Hazards Model;Data Mining
    日期: 2020-07-17
    上傳時間: 2020-09-02 15:32:53 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著顧客關係管理(Customer Relationship Management)的興起,越來越多 的業者希望透過資訊科技來瞭解並滿足客戶的需求,建立與現有顧客更緊密的關 係來提升顧客滿意度、降低顧客流失率,以提升企業的財務績效。因此,企業開 始嘗試以資料探勘來進行對顧客進行分析,譬如使用分群演算法將顧客分成不同 群體進行行銷,利用 BG/NBD 模型來預測顧客終生價值等。
    現今,顧客流失預測模型為 CRM 系統中常見的模型之一,可告知管理者哪 些顧客將會離開企業,管理者即可針對此客群設計行銷活動等激勵措施,盡可能 地降低顧客實際的流失率。此模型已是企業管理顧客流失的基本方法之一,現在 常用於建立顧客模型的工具為羅吉斯迴歸(Logistic Regression)、類神經網路 (Neural Networks)、決策樹(Decision Tree)、支援向量機(Support Vector Machine, SVM)等。
    本篇論文提供零售業的顧客流失預測模型,透過 DBSCAN 演算法將現有客群 的顧客交易紀錄依交易天數間隔進行分段,並以醫學存活分析研究中 Cox 比例風 險模型建立顧客流失預測模型,可依據顧客前六十天的資料,預測顧客未來是否 會流失。此模型可有效標記出可能流失的顧客,業者可針對這些顧客研究相關的 行銷策略。;With the growth of CRM, companies have started to meet customer needs through information technology, and establish a closer relationship with existing customers to reduce customer churn rate, in order to improve the company′s financial performance. Therefore, companies began to use data mining to analyze customers, such as using clustering to divide customers into different cluster for marketing, and using BG/NBD models to predict customer lifetime value.
    Customer churn problem was originally the main topic from telecom industry. The customer churn prediction model is the solution which can provide managers which customers will be lost, and design the campaign for these customers, and this model is already the basic solution for companies to manage customer churn. The tools commonly used to build customer models are Logistic Regression, Neural Networks, Decision Tree, and Support Vector Machines. (Support Vector Machine, SVM), etc.
    In this paper, we provides a new method to segment customer transaction data of existing customer groups through the DBSCAN algorithm, and establish a churn prediction model based on the Cox proportional hazard model in medical survival analysis research, based on the previous 60 days of the customer Data to predict whether customers will be lost in the future.
    顯示於類別:[企業管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML147檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明