中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/85877
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42410481      Online Users : 1456
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/85877


    Title: 透過多種因子預測隔週登革熱的感染區域;Predicting infection area of Dengue for next week through a variety of factors
    Authors: 鄭琮翰;Zheng, Cong-Han
    Contributors: 企業管理學系
    Keywords: 登革熱;不平衡資料;隨機森林;極限梯度提升;Dengue;Random Forest;XGBoost;imbalanced data
    Date: 2021-07-20
    Issue Date: 2021-12-07 11:37:00 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 因為登革熱需要二次感染才會造成重症的特性,死亡率不高,造成疫情的嚴峻程度較不起眼,但隨著全球暖化,登革熱的分布範圍漸漸改變;過去國內外對於登革熱的研究中,最常見的是以氣候因子做登革熱的預測,再來是氣候因子結合社會因子與氣候因子結合地理因子,目前並無將三種因子結合的研究,故本研究結合三種因子,與臺灣登革熱的病例資料,以人口數量劃分的二級區域做為顆粒度,利用 Random Forest 與XGBoost 建立登革熱隔週感染區域預測模型。最後實驗結果 Random Forest 與 XGBoost的 ROC/AUC 皆高於 93%,且 Recall 皆高於 80%,依照此結果,政府單位可以更精準的去判別需要噴藥撲滅的登革熱可能感染區域,進而降低人力成本與醫療資源。;Death rate of dengue fever is low, because dengue fever become severe illness only when second infection happened. However, global warming is getting server recently, which make the infection distribution of dengue fever different. Common method of previous studies use climate factors combined with social or geographic factors to predict dengue fever. However, recent study did not use combination of these three factors into dengue fever prediction. We proposed a method that combines these three factors with data of Taiwanese dengue fever and uses the secondary area divided by the population as the granularity. Random Forest and XGBoost are used for prediction model of weekly dengue fever infection area.

    Experimental results showed that the ROC/AUC of Random Forest and XGBoost are both higher than 93% The Recall rate is higher than 80%. With the result, government can determine which area should do disinfection process to reduce the infection rate of dengue infection. Because of accurate prediction and disinfection process, the personnel cost can be reduced and it can prevent waste of medical recourse.
    Appears in Collections:[Graduate Institute of Business Administration] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML59View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明