中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/89345
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41649140      Online Users : 1437
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/89345


    Title: 3C 購物網站瀏覽行為分析之研究;Analytics of Browsing Behaviors for Marketing Initiatives
    Authors: 吳昱蓁;Wu, Yu-Chen
    Contributors: 企業管理學系
    Keywords: 分群;決策樹;手肘法;顧客旅程;瀏覽行為;電子商務;K-means;Decision tree;Customer journey;Browsing behavior;E-commerce
    Date: 2022-08-02
    Issue Date: 2022-10-04 11:11:40 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著網路購物的普及,對於電子商務平台業者來說,如何精準確認消費者的瀏覽意圖是很重要的。若能將消費者每次的瀏覽行為視為一單位,而非將同一位消費者所有的瀏覽行為囊括為一單位來進行分析,就能避免同一位消費者的瀏覽意圖在不同階段或時期可能會不同,進而造成結果不精確的狀況發生。然而,過去的研究鮮少將此因素納入考量。本篇論文以3C購物網站的用戶瀏覽行為進行分析,以每次的瀏覽行為為單位來進行消費者瀏覽意圖研究,並著重在頁面停留時間百分比變數,透過分群將消費者的瀏覽行為模式分類,接著用決策樹分析了解每個群集的特徵,並依特徵將各群集配對顧客旅程的各階段,最後給予處於各階段的群集相關的行銷建議。;With the popularization of online shopping, e-commerce platform companies need to define customers’ browsing intentions precisely. If we can make every customer’s each browsing session but every customer’s all browsing history as a unit, we can avoid the situation in which one customer has different browsing intentions in different periods and make the research results not be influenced by this deviation.
    Nevertheless, previous researches rarely consider this component. This study aims to take every customer’s each browsing session as a unit to analyze customers’ browsing intentions and focus on page browsing time proportion. First, it classifies customers’ browsing behaviors into four clusters by K-means Clustering. Second, it uses Decision trees to analyze each cluster’s attributes and map these clusters to different Customer journey stages. Finally, it gives marketing suggestions for each cluster based on its attributes and the customer journey stage’s meaning.
    Appears in Collections:[Graduate Institute of Business Administration] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML43View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明