中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/92223
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41640140      Online Users : 1268
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/92223


    Title: 以線上評論探討智慧型手機重要屬性之研究 - BERT與Kano Model之應用;Exploring key attributes of smartphones through online reviews - an application of BERT and KANO model
    Authors: 柳子寧;Liu, Tzu-Ning
    Contributors: 企業管理學系
    Keywords: 情感分析;文字探勘;語言模型;商品屬性;BERT;Aspect-based Sentiment Analysis;Text Mining;Kano Model
    Date: 2023-07-06
    Issue Date: 2024-09-19 15:23:51 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 電子商務的發展使得網路評論成為消費者和企業之間的重要溝通管道。本研究的目的在於利用網路評論資料來獲取消費者需求資訊,並用以改善產品開發策略。透過應用Kano模型和屬性情感分析(Aspect-Based Sentiment Analysis),本研究利用三個案例研究來分析智慧型手機評論,進而探討不同品牌陣營、世代與價格帶之間,消費者對智慧型手機的看法。

    本研究利用自然語言處理技術,包括屬性提取和情感分析來檢視評論。提取出的屬性被嵌入,並採用K-means分群方法將其分組。這些屬性分組連同其情感和整體評級一起作為神經網絡模型的輸入,以確定情感對整體評分的影響。基於這些影響,將產品的屬性歸類到Kano Model中。

    研究結果顯示,消費者在寫評論的時候,會受到其比較基礎影響。例如,在觸屏時代的低價格帶中,客戶認為"藍牙"和"功能"是必要屬性,而這些屬性在中、高價格帶時卻轉變成performance屬性。這個結果顯示,在手機產品的初期階段,客戶非常重視藍牙和類似筆這樣的配件,因為過去的掌上型筆電(PDA)等類似產品也具備筆和藍牙功能。透過整合Kano模型和屬性情感分析,本研究為消費者需求分析領域做出了貢獻,使企業能夠根據網路評論中提取的消費者回饋做出更精確的產品決策。
    ;In the era of e-commerce, online product reviews have become an essential source of information for consumers and businesses alike. This study aims to leverage the abundance of online reviews to gain valuable insights into customer preferences and improve product development strategies. We apply the BERT and Kano Model to analyze online product reviews, conducting three case studies that can assist E-commerce retailers with marketing precision based on a better understanding of customer thought.
    Various approaches were applied to cell phone review data from 10 brands spanning November 2003 to December 2019. Important attributes were extracted and sentiment was classified using the BERT model. K-means clustering grouped these attributes based on reviewers′ perspectives. The SHAP value and effect-based Kano Model were used for additional analysis.
    Regardless of generation, iPhone customers prioritize battery capacity and charging speed. A notable transition in the perception of the "battery" attribute was observed in the high price zone, attributed to increased availability and diversity of phone applications. Product comparisons, rather than the product itself, significantly influence customers′ reviews. The importance of "price" has diminished over three generations, indicating a shift in preference towards more affordable options. iPhone buyers prioritize user experience, while Android phone buyers focus on functional aspects.
    We do not consider different customer segments, such as age or gender, which may impact customer satisfaction dimensions. Future research should analyze online reviews specific to target customer segments for valuable insights and tailored product strategies.
    Our study analyzes online product reviews across various brands, generations, and price zones. Utilizing the BERT model and integrating SHAP value into the Kano model, we provide comprehensive insights that surpass traditional approaches, enabling a clear understanding of customer preferences.
    Appears in Collections:[Graduate Institute of Business Administration] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML9View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明