English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41628899      線上人數 : 3338
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/92334


    題名: 跨領域分辨真假評論之研究-以BERT為基礎模型;Identify Deceptive Reviews in Cross-domain Content with BERT
    作者: 陳莉茿;CHEN, LI-JU
    貢獻者: 企業管理學系
    關鍵詞: 跨領域;BERT;假評論;虛假偵測;遮蔽資訊;cross-domain;BERT;fraud reviews;deception detection;masking information
    日期: 2023-07-26
    上傳時間: 2024-09-19 15:46:44 (UTC+8)
    出版者: 國立中央大學
    摘要: 線上評論在電子商務中具有重要的影響力,消費者越來越仰賴這些評論來做出購買決策,然而,不道德的企業可能散佈假評論以操縱消費者意見,而Ott et al. (2011) [19] 實驗表明,人類識別假評論的準確率僅有57.3%,且對於跨領域的真假評論分類模型,目前尚缺乏對於在不同領域間共享的文本特徵和規則之研究,由於模型過度依賴相同來源的資料,導致同個模型在其它資料集測試時,準確率急遽下降。
    因此,本研究提出基於 Bidirectional Encoder Representations from Transformers (BERT) 的模型,利用[MASK]替代評論中出現的該領域特定單詞,克服跨領域之間兩者評論風格差異性過大的問題,在我們的研究中使用來自Ott et al. (2011) [19] 和Li et al. (2014) [33] 在餐廳、旅館、醫生領域之評論,以及本研究額外加入Yelp真實評論做為訓練資料。最後,MASK-BERT於實驗結果中,與Ren & Ji (2017) [25] 為目前研究最佳之結果做比較,在Cross-domain中,F1-score最佳表現為 88.49%;而對於內容差異性較大的醫生領域,在本研究提出遮蔽機制後,Accuracy也提升了15~20%。;Online reviews play a significant role in e-commerce. Consumer has been more relied on them when making decision in purchasing. However, unethical businesses may spread deceptive reviews to manipulate consumer`s opinion. Research by Ott et al. (2011) [19] showed that humans can only identify fraud reviews with only an accuracy of 57.3%. Besides, recent research face a crucial challenge that the cross-domain classification model is too rely on similar datasets from the same domain, which causes in a sharp decline in accuracy when testing on datasets from different domain. Currently, there is a lack of method on text features or rules to share with different domains.
    Hence, our study proposes a model based on Bidirectional Encoder Representations from Transformers (BERT). We suggest replacing domain-specific words in reviews with [MASK] to overcome the significant stylistic differences between cross-domain reviews. Our research utilizes reviews from Ott et al. (2011) [19] and Li et al. (2014) [33] in the domains of restaurants, hotels, and doctors, supplemented with Yelp reviews as real data for training. Finally, we compare the results of MASK-BERT with the state-of-the-art approach by Ren & Ji (2017) [25]. In the cross-domain, particularly in the doctor domain with larger content differences, our proposed masking mechanism leads to a highest accuracy improvement of 15-20%.
    顯示於類別:[企業管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML14檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明