English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42118292      線上人數 : 759
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/92428


    題名: 以衛星資料預測天災及期貨價格變化;Predicting natural disaster and commodity price movement with satellite data
    作者: 曾柔慈;Tseng, Jou-Tzu
    貢獻者: 企業管理學系
    關鍵詞: 衛星遙測;植被指數;區域性異常因子;自編碼器;Satellite telemetry;Normalized Difference Vegetation Index;Local Outlier Factor;Auto-Encoder
    日期: 2024-01-30
    上傳時間: 2024-09-19 15:51:34 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究欲通過結合遙感技術和機器學習的方法,旨在探討天災對美國主要玉米產區的歸一化植被指數 (NDVI) 變化,以及其對於美國玉米期貨市場價格的潛在影響。

    為此,本研究提出一種基於結合自編碼器 (Auto-Encoder) 和區域異常因子 (Local Outlier Factor, LOF) 的模型,先利用Auto-Encoder進行特徵學習,捕捉數據中關鍵的特徵值,接著使用訓練完成的Auto-Encoder中Encoder的部分將原始數據集進行轉換,作為LOF模型的輸入、並訓練模型進行異常值檢測 (天災預測) ,最後通過多階段的模型參數調整,尋求最佳的參數配置和異常值閾值設定。

    實驗結果表明,我們所提出的模型在天災預測方面達到了65% 的Precision、69%的Recall、以及67% 的F1 Score。除此之外,在模型準確預測的天災案例中,我們觀察到天災發生當日對美國玉米期貨市場價格的影響,無論是從期貨交易筆數、還是從整體價格的漲/跌幅的角度來看,我們發現價格多數呈現上漲趨勢。綜合上述,本研究展示了結合遙測技術和機器學習在農業監測和災害管理領域的應用潛力。;Our study aims to explore the impact of natural disasters on the Normalized Difference Vegetation Index (NDVI) in major corn-producing areas of the United States, and its potential influence on the US corn futures market, through the integration of remote sensing technology and machine learning methods.

    To this end, we propose a model that combines an Auto-Encoder and Local Outlier Factor (LOF). Initially, the Auto-Encoder is utilized for feature learning to capture key characteristics within the data. Then, the trained Auto-Encoder′s encoder is used to transform the original dataset, serving as the input for the LOF model for anomaly detection (predicting natural disasters). Finally, through multi-stage parameter adjustments, our study seeks the optimal configuration of parameters and anomaly threshold settings.

    The experimental results indicate that our proposed model achieved 65% Precision, 69% Recall, and 67% F1 Score in disaster prediction. Furthermore, in the disaster cases accurately predicted by the model, we observed the impact on the United States corn futures market price on the day of the disaster. From the perspective of both futures trading volume and overall price fluctuations (rising or falling), we found that prices generally showed an upward trend. In summary, our study demonstrates the potential application of combining remote sensing technology and machine learning in the fields of agricultural monitoring and disaster management.
    顯示於類別:[企業管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML32檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明